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Abstract

It is shown that the recovery of particle coordinates by detectors with intrinsic resolution determined by the point
spread function and "nite size of detector bins can be reduced to a solution of the standard convolution integral equation
with a modi"ed point spread function. Two approaches are proposed and investigated for this problem: parametric and
non-parametric ones. Algorithms and their testing for both the approaches are given. It was shown that both the
algorithms can resolve the coordinates of particles with a resolving power better than the bin size of the detector
granulation unit and the point spread function characteristic scale. It is also demonstrated that the superresolution
e$ciency of the proposed parametric algorithm almost attains the CrameH r}Rao limit and Shannon's limit for the
non-parametric algorithm. Results of numerical experiments and of real data processing of the CERES silicon drift
detector are given. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is devoted to the problem of the most
exact determination of the observed signal position
from noisy experimental data distorted by

a measuring device and written as histogram data.
The problem has a long history [1}3] and is of
importance for data processing in almost any "eld of
experimental physics: in time-of-#ight techniques,
spectrometry, astronomical imaging, processing of
signals from silicon drift detectors (SDD) or time
projection chambers, etc. [4}11]. Therefore, our
consideration is mainly of a methodological charac-
ter, which gives the reader a general criterion for
choosing a data handling approach by comparing its
accuracy with an ideal, the best possible one. Our
methods described below are general enough to be
applicable in many speci"c experimental situations.
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For better understanding we use the typical
example of an elementary particle that passes a dis-
crete detector producing an electromagnetic
shower. In order to improve the resolution and
accuracy of contemporary detectors listed above,
they are designed as granular structures consisting
of an array of cells (pads). During the process of the
registration the signal is spread between several
adjacent cells, so each cell registers a portion of
electron shower energy or charge fallen on it. Thus
the signal during the registration is discretized and
stored as a 1D or 2D histogram.

The basic problem is to reconstruct the original
signal position and its other parameters (its ampli-
tude or the volume under its surface, its half-width,
etc.) from the registered histogram. Depending on
its formulation this problem can be solved in either
non-parametric (NP) or parametric ways.

The "rst non-parametric approach also named
the unfolding problem is applied when the parametr-
ization of the problem is unknown. Mathematically
it is formulated as the integral equation of the "rst
kind (see Eq. (2) in the next section).

The second approach is well-known as para-
meter "tting. It is, usually, carried out by the least-
squares method (LSM). However, one of the most
widely used ways for "nding the position of a signal
is based on the assumption of signal symmetry.
It leads to the center of gravity (COG) algorithm.
More accurate methods apply more detailed
parametrization based on the approximation of the
bell-shape form of the electron cloud by a two-
dimensional Gaussian or other symmetrical surface
(see, for example Refs. [4,5,12]).

However, for almost any real experimental setup
both problems are considerably complicated by, at
least, three main factors:

f the signal distortion due to the histogramming
process of the experimental data storing;

f the presence of background noise;
f signal overlapping due to the high occupancy of

the majority of modern experimental systems.

The in#uence of the "rst factor, as shown in Section
2, can be expressed mathematically by the convolu-
tion of the so-called instrumental function of our
detector (which is the kernel of the integral equa-
tion mentioned above) with function (3) in Section

2.1 presenting the "nite size of the detector
granularity.

The second factor develops in two ways: in
adding some noise to each histogram value and in
the appearance of some noisy signals exceeding
a given cut-o!. The latter e!ect can be handled by
the cut-o! increase. New e$cient robust methods
are developed [13] and can be applied to process
data contaminated by this type of background.

However, noise distortions of the signal value
registered in each detector pad can hinder the re-
covery of close signals. In fact these noise distor-
tions set the resolution limit for close signals. It
follows from the close analogy between processing
of noisy experimental data and data transmitted
through a noisy channel considered in the next
section.

The third factor which is very important in many
cases is when the probability of two and more
overlapping signals is su$ciently large, so
this paper is mainly focused on it. We do not
consider here the wavelet transform approach
developed recently for extracting of parameters
of noisy signals [14], since it is de"nitely amenable
to the parametric methods proposed below,
especially in the resolution accuracy of very close
signals.

The paper is organized as follows. After the
present introduction the basic mathematical
background is given in Section 2 devoted to the
non-parametric approach. Then the problem of
taking account of both the intrinsic resolution of
the detector and the "nite size of detector cells is
considered. It is reduced to the standard convolu-
tion type equation with the modi"ed kernel shape.
It is also explained how the well-known Shannon
theorem [15] can be applied to "nd a limit of the
reachable accuracy of signal resolution. The
non-parametric maximum-likelihood algorithm for
recovery of particle data is also described in the end
of this section.

Section 3 shows how the more accurate paramet-
ric estimation (PAM } see further) can be applied to
the problem and the CrameH r}Rao (CR) lower-
bound expression for the accuracy limit of particle
location coordinate x

0
is derived. In Section 4

numerical results are presented of 1D simulations
as well as of some examples of real SDD data
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Fig. 1. CERES SDD image of an Au}Pb event.

processing. Results of NP}PAM applications are
compared with COG-method applications and
the corresponding accuracy of CR lower bound.
Concluding remarks are presented in Section 5.

2. Non-parametric approach

For the sake of intelligibility let us use the
CERES SDD doublet example with its polar co-
ordinates (although for a cartesian co-ordinate
SDD system like wafers of STAR-SVT (Silicon Ver-
tex Tracker) setup [11] the problem formulation is
almost the same as in Ref. [16]). Each of the two
CERES SDD detectors has a disk shape with an
active inner and outer radii of R

*/
"6 mm and

R
065

"32 mm, respectively (see Fig. 1).
The 360 radially oriented anodes register signals,

i.e. the charges of electron clouds appearing when
particles hit the detector. While drifting an electron
cloud increases its size due to di!usion and elec-
trostatic interaction between electrons.

As it was shown in Ref. [5] the signal has a bell-
shape form, which can reasonably be approximated
by a two-dimensional Gaussian with maximum

amplitude A:

N(x, r; A, x
0
,R

0
)

"A expC!
(x!x

0
)2

2p2
x

!

(r!R
0
)2

2p2
r

D (1)

where x"ru is perpendicular to the radius direc-
tion, R

0
and x

0
"R

0
u

0
are the initial coordinates

of the electron cloud, and

p2
r
"2Dt, p2

x
"2Dt

R
065

R
0

are their variances,

t"
R

065
!R

0
<

$

is the drift time, R
065

is the radius of the electron
cloud at the time t. Values D for the di!usion
constant of electrons in silicon, and the radial drift
velocity <

$
are supposed to be known constants.

The single-particle event (electron cloud charge)
is registered by several adjacent cells of a 2D grid
formed by 360 anodes in the azimuthal direction
and time-bins in the radius direction. So the charge
distribution on each cell can be calculated by 2D
integration of Eq. (1) over this cell. If two signals
ovelap, their contributions to the same cell are
superimposed.

Our aim is to estimate the center and the ampli-
tude of a digitized signal, which can be considered
as two-dimensional histogram Ma

ij
N formed by ex-

tracting a cluster of ajacent cells with amplitudes
exceeding a given threshold.

However, due to the factorized form of a 2D
Gaussian (1) we can reduce this 2D problem to
several one-dimensional ones. As seen in Fig. 1 due
to an extremely high multiplicity of central Au}Pb
collisions (up to 1000 tracks) over 30% of signals
overlap each other. If signals occur so close to each
other that they are indistinguishable producing
only one maximum, a correct parametrization is
hard to obtain, since even the number of functions
to be "tted is unknown. However, the non-
paramentric algorithm described below can be used
to produce good initial parameter values for the
parametric scheme based on reducing the problem
to the case of handling of one-dimensional
histograms.

466 E.A. Kolganova et al. / Nuclear Instruments and Methods in Physics Research A 443 (2000) 464}477



2.1. Problem formulation

According to the number of anodes covered by
the given cluster (let it be k) we split the 2D array
Ma

ij
N for each "xed u

j
into k one-dimensional histo-

grams MF
i
N for i"1, 2,2, n

k
. Then for each j one

can obtain the function f (x) as a solution of the
following integral equation:

F
i
"PD

i

drPK(r!x) f (x) dx

"P
ri`D@2

ri~D@2

drPK(r!x) f (x) dx (2)

where the internal integral in Eq. (2) is taken with
respect to x, the function f (x)'0 is unknown and
the kernel K(r) is the one-dimensional Gaussian

K(r)"expA!
r2

2p2
r
B

with p
r
supposed to be a known constant inside the

given cluster. To take into account the "nite size of
our histogram bin we determine the function

h(r)"G
1, DrD)D/2

0, DrD'D/2
(3)

and transform formula (2) as follows:

F
i
"F(r

i
)"P

ri`D@2

ri~D@2

drPK(r!x) f (x) dx

"P
ri`D@2

ri~D@2

h(r!r
i
) drPK(r!x) f (x) dx

"P f (x) dxP
ri`D@2

ri~D@2

h(r!r
i
)K(r!x) dr. (4)

Then substituting the integration variable in the
internal integral in Eq. (4) by r!x"t and using
the fact that the function h(r) is even we obtain

P h(t#x!r
i
)K(t) dt

"P h(r
i
!x!t)K(t) dt"K

1
(r
i
!x). (5)

Here the modi"ed instrumental function

K
1
(s)"P h(s!r)K(r) dr (6)

is the convolution of the function h and the original
kernel K. We obtain eventually the following inte-
gral equation:

F
i
"F(r

i
)"PK1

(r
i
!x) f (x) dx. (7)

Since our measurements are, in fact, the values F
i
of

the histogram, whose bin centers are denoted as x
i
,

the integral equation (7) is reduced to the system of
algebraic equations suitable for computer imple-
mentation.

m
+
j/1

P
ij
G

j
"F

i
, i"1, 2,2, n (8)

where

P
ij
"K

1
(r
i
,x

j
) ) (x

j`1
!x

j
). (9)

Depending on its formulation this problem can be
solved in either non-parametric or parametric
ways. The "rst non-parametric approach also
named the unfolding problem is applied when the
problem parametrization is unknown. Mathemat-
ically it is formulated as the integral equation of the
"rst kind (2) with the kernel (6).

Although for continuous kernels the unfolding
problem is ill-posed (see Ref. [17]), however as it
was proved there, when one looks for a solution on
a compact set, the problem can be solved for a su$-
ciently wide class of kernels including the convolu-
tion K

1
(s).

2.2. Maximum-likelihood (ML) algorithm
for convolution integral equations with the
Gaussian distribution of input data

The contents of this section is based on Refs.
[18,19], where readers can "nd more detailed in-
formation on this subject. In the case of a Gaussian
distribution function of input data the logarithmic
likelihood function may be written as

¸"!

1

2

n
+
i/1

(F
i
!S

i
)2

D
i

#const (10)
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where the values of D
i

are equal to the noise
variances at the ith experimental point

D
i
"p2

i
, i"1, 2,2, n

and the values of S
i
are de"ned by the formula

S
i
"

m
+
k/1

P
ik
G

k
, i"1, 2,2, n

with P
ik

taken from Eq. (9). Let us denote the sum
of G

k
by G and the normalized quantities g

k

G"

m
+
k/1

G
k
, g

k
"

G
k

G

so the likelihood function may be de"ned in the
extended (m#1)-dimensional space Mg

k
, GN,

k"1, 2,2,m. The extremum conditions in this
space are as follows:

L¸
Lg

k

"G
n
+
i/1

F
i
!S

i
D

i

P
ik
"0, k"1, 2,2,m (11)

and

L¸
LG

"G~1
n
+
i/1

F
i
!S

i
D

i

S
i
"0. (12)

From Eq. (11) one may obtain

G"

+n
i/1

(F
i
s
i
)/D

i
+n

i/1
s2
i
/D

i

, where s
i
"

m
+
k/1

P
ik
g
k
"S

i
/G.

So for any given vector Mg
k
N there is only one value

of G maximizing the likelihood function.
The maximum of the likelihood function ¸ is

sought for the case of Gaussian noise by means of
an iterative procedure. The direction of search dg(t)

k
is de"ned by

g(t`1)
k

"g(t)
k
#hdg(t)

k
,

where

dg(t)
k
"g(t)

k

n
+
i/1
A
F
i
!G+m

j/1
P
ij
g(t)
j

D
i

B. (13)

The value of the optimal step h in the direction of
search Mdg

k
N is de"ned by the equation

d

dh
¸(G(h), Mg

k
#hdg

k
N)"0 (14)

where

G(h)"
+n

i/1
(F

i
s
i
)/D

i
#h+n

i/1
(F

i
ds

i
)/D

i
+n

i/1
(s
i
#hds

i
)2/D

i

and

ds
i
"

m
+
k/1

P
ik
dg

k
.

It was shown in Ref. [19] that the likelihood func-
tion after one iteration step

¸(h)!¸(0)"
1

2
G(h)

m
+
k/1

(dg
k
)2

g
k

h*0

is always non-negative and proportional to the
length squared of the likelihood function gradient,
so the iteration process (13) with step h de"ned by
Eq. (14) and satisfying the condition

h) min
Mk_dgk:0N

(!g
k
/dg

k
)

converges to the maximum of the likelihood
function (10).

The iteration formula (13) is essentially non-lin-
ear, "rstly, because the unknown vector Mg

k
N is used

here as the factor and, secondly, due to the depend-
ence of s

i
on g

k
. The existence of such non-linearity

in the ML algorithm is its most important prop-
erty, and it is the key to the ultimate resolution
achievement as compared with any linear methods
of signal recovery. It is shown in Ref. [18] that this
improvement of resolution, or superresolution, by
using Eq. (13) reaches the theoretical limit. Such
a limit for close signals follows from the well-
known Shannon theorem for the maximum speed
of data transmission via a channel containing
noise [15].

To explain that in more detail let us introduce
some useful de"nitions concerning the superresolu-
tion factor. The resolution of any linear device with
the instrumental function K(x) can be de"ned as the
e!ective width of this function, i.e.

D"P
=

~=

K2(x) dx (15)

providing the normalizing condition at the origin
K(0)"1.
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The resolution of spectral devices can be
improved in comparison to D using modern
techniques for solving integral equations, thus
superresolution is achieved. We de"ne the super-
resolution factor as the ratio of D to the separation
d between two narrow lines which can be recovered
after the deconvolution procedure

SR"D/d. (16)

We should recall that according to the well-known
Rayleigh de"nition of resolution d"D, so in this
case the superresolution factor is SR"1. When the
resolution is improved mathematically, SR'1.
The improvement is always limited by noise. At
zero noise an exact solution of Eq. (2) can be found,
which corresponds to an in"nite superresolution.

The highest possible superresolution factor is
closely related to Shannon's theorem on the highest
possible transmission rate of information through
a noisy channel [15]. When a spectrum is not
parametric, i.e. the function we sought for cannot
be described by a simple formula with a few para-
meters, the limiting superresolution factor is

SR"1
3
log

2
(1#E

4
/E

/
). (17)

Here E
4

and E
/

E
4
"P

=

~=

F2(x) dx, E
/
"np2

are the signal energy and the noise one. Here n is
the number of experimental data points, and p2 is
the variance of input noise. If the signal-to-noise
ratio is expressed in decibels dB"10 log(E

4
/E

/
),

the approximate expression for the superresolution
limit is

SRKdB/10. (18)

Let the signal-to-noise-ratio be for example 30 dB.
It follows from Eq. (18) that SRK3. This means
that in this case we can resolve some details in the
reconstructed signal on a minimal distance three
times smaller than the size D of the instrumental
function.

When the signal sought for can be described by
a formula with a few parameters, the superresolu-
tion is determined by the CrameH r}Rao lower-

bound inequality [20] and it may be much higher
than the one predicted by Eq. (17). But when the
shape of the spectrum is unknown and the aim of
the experiment is to determine the shape, the para-
metric approach does not work, and resolution is
determined by Eq. (17).

In Ref. [19] the computer program package
RECOVERY was described, which can reach the
Shannon superresolution limit. The programs from
the RECOVERY package are based on the max-
imum likelihood principle and they look for the
maximum of the likelihood function in the "nite-
dimensional set of solutions, which is always a com-
pact set. The RECOVERY code is accessible from
the CPC Program Library. The results of the non-
parametric approach described in Section 4 are
obtained by using the modi"ed DCONV program
from the RECOVERY package. From now on we
refer to the non-parametric method as NP.

3. Parametric approach and CrameH r}Rao
lower-bound for accuracy

It is obvious that parametric methods must be
more accurate than non-parametric ones, since the
parametrization itself brings essential information
related to the processed signals. Even a general
knowledge such as the signal symmetry is enough
to apply the easy-to-calculate COG method to esti-
mate the signal centroid:

x
#0'

"

+
i
a
i,j

x6
i

+
i
a
i,j

, y
#0'

"

+
j
a
i,j

y6
j

+
j
a
i,j

(19)

where a
i,j

is a 2D histogram presenting a detector
response to the current signal, x6

i
,y6

j
are the middle

points of the corresponding bins. The high speed
and universality of this method makes it the most
popular for the majority of discrete detectors, un-
less the growing particle multiplicity leads to the
situation when 30% and more of signals overlap
each other as one can see in Fig. 1. Signal super-
position causes considerable errors in the COG
method despite various tricks with testing to "nd
out if a histogram is non-unimodal and then split-
ting it into two or more clusters. Moreover, cases
when signals appear so close that the resulting
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histogram becomes unimodal lead to the complete
breakdown of the COG approach. The NP
methods described above are rather slow and they
do not satisfy the requirements of the very high rate
of the data stream. Thus more elaborate parametric
methods are needed to develop fast, e$cient and
accurate algorithms which could meet these re-
quirements. Due to non-linearity of the problem
these methods are necessarily iterative, so their
quality depends very much on the right choice of
initial parameter values. Reasonable sources of
these initial values are either COG methods, when
either the signal number is known or else results of
the few "rst iterations of NP methods.

One more detail should be pointed out to specify
requirements of the parametric methods in nuclear
physics. Recent measurements on the CERES
experiment show that the integrated front-end
electronics violate the assumption about the full
symmetry of the registered signals (see, for example,
Ref. [12]). Namely for each radius R the values of
p
x

are di!erent. During a special statistical process-
ing of Pb}Pb experimental data it was found that
the appearing asymmetry can be locally described
as the so-called `asymmetrical Gaussiana. This
means that two halves of the signal pulse are "tted
using a composition of two Gaussians with widths
p
0
!D below the maximum, and p

0
#D above the

maximum:

f (x)"
A

J2pp
expC!

(x!x
0
)2

2p2 D
where x,x

i
are the time bins, A is the amplitude,

x
0

is a position of the Gaussian maximum, and

p"G
p
0
!D for x)x

0
p
0
#D for x'x

0
.

(20)

The corresponding parameters were "tted on the
representative sample of central Pb}Pb collisions,
where only a small admixture of double pulses was
observed. It yielded p

0
"1.73 time bins at x

0
"50

time bins and p
0
"2.09 time bins at x

0
"220 time

bins [12]. The dependence is rather linear, namely
p
0
"1.626#0.2097]10~2x

0
. The delta para-

meter drops, D"0.18 at x
0
"50, and D"0.02 at

x
0
"220.

This asymmetry observation is also an addi-
tional objection against an uncritical use of COG
methods.

However, in our "rst approach we simplify the
situation assuming that signals are symmetrical.
Furthermore, in Section 4 we extend our formalism
to the case of real signals with their asymmetry. We
take into account the described asymmetry model
in our simulations by applying p from Eq. (20) in
corresponding ranges of x.

3.1. Single peak parameters estimation

In the case of one single signal peak with the
Gaussian shape

t(r; A,R)"A expC!
(r!R)2

2p2
r
D (21)

we have the histogram Ma
i
N, i"1, n. Let us suppose

bin width to be unity, i.e. *r"r
i`1

!r
i
"1. We

have to "t the function given by Eq. (21) to this
histogram. Assuming that the noise distribution is
normal with zero mean and known variance
p2
/0*4%

the problem is reduced to minimizing the
corresponding least-squares functional

L(A, r
0
)"+

i
Aai!P

ri`1

ri

t(r;A, r
0
) drB

2
. (22)

It contains the unknown parameter r
0

under the
integral sign. This obstacle can be avoided by re-
placing each integral in Eq. (22) by its approximate
mean value: t(r6

i
; A, r

0
), where r6

i
"(r

i`1
#r

i
)/2, so

Eq. (22) is simpli"ed to

LI (A, r
0
)"+

i

[a
i
!t(r6

i
;A, r

0
)]2. (23)

Searching for its minimum one should solve the
corresponding system of normal equations ob-
tained by equating to zero the LI (A, r

0
) partial

derivatives. However, this system is, unfortunately,
transcendental. This requires us to develop
a special iterative procedure to solve it. As initial
values A(0), r(0)

0
of unknown parameters for this

procedure in a single signal case we use

A(0)"max
Mr( iN

a
i
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and the center of gravity obtained from Eq. (19)

r
0
"

+
i
a
i
r6
i

+
i
a
i

.

Then considering Eq. (23) as a function of two
parameters z"z(x, y) we approximate it in the
vicinity of A(0), r(0)

0
by an elliptic paraboloid

z"ax2#by2#cxy#dx#ey#f (24)

where x, y are current values of parameters r, A. To
"nd six coe$cients of Eq. (24) it is necessary to
calculate the values of LI (A, r

0
) in the point tem-

plate, i.e. in six specially selected points surround-
ing x0"r(0)

0
, y0"A(0) chosen as the base point of

this template. We use the simplest template design:
the base itself, step left, step right from it in each
dimension and the last point by step right in both
dimensions. After solving the corresponding system
of six linear equations to "nd our paraboloid coe$-
cients its minimum coordinates are easily
calculated:

x
.*/

"

!2bd#ce

4ab!c2
, y

.*/
"

!2ae#cd

4ab!c2
. (25)

The obtained coordinates are used as A(1), r(1)
0

, i.e.
as the base point for the second iteration. Although
a few iterations are enough, as a rule, the iteration
process is controlled by testing either the maximum
admissible accuracy of the minimum position or
the "xed maximal number of iterations. From now
on we refer to this method as the Paraboloidal
Approximation Method (PAM).

3.2. CrameH r}Rao accuracy limit

For the sake of simplicity let us consider a model
of estimating the single signal location parameter
x
0

from a sample of n measurements:

y
i
"At(x

i
!x

0
)#e

i
, i"1, 2,2, n.

Here t(x) is the signal shape, A is its amplitude, and
a random noise e

i
has the Gaussian distribution

N(0,p), i.e.

p(e
i
) de

i
"

1

J2pp
expA!

e2
i

2p2Bde
i

where di!erent noise sample units are assumed to
be (for a simplicity again) independent and non-

correlated: e
i
e
j
"p2d

ij
. Applying the standard

maximum likelihood method (MLM) for estima-
ting the signal amplitude A and location parameter
x
0

one has to maximize the likelihood function of
the sample

¸"

n
<
i/1

p(e
i
)"A

1

J2ppB
n
expA!

1

2p2

n
+
i/1

e2
i B

"A
1

J2ppB
n
expC!

1

2p2

n
+
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[ y
i
!At(x

i
!x

0
)]2D.

This reduces to maximizing the logarithmic likeli-
hood function

l"ln¸"Const!
1

2p2

n
+
i/1

[y
i
!At(x

i
!x

0
)]2.

According to the CrameH r}Rao inequality [20] for
unbiased estimates one has

D(x
0
)*

1

E[(Ll/Lx
0
)2]

.

Here, as usual, the symbol E denotes the math-
ematical expectation obtained by various random
realizations of e

i
for i"1, 2,2, n. Taking the par-

tial derivatives with respect to the parameter
x
0

one obtains
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where
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i
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)
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.

Since e
i
e
j
"p2d

ij
, one has
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Fig. 2. CrameH r}Rao limiting resolution dx
0

versus the signal
t(x!x

0
) position x

0
on the X-axis for four values of

D/D"1
4
, 1
2
, 1,R } the curves a, b, c and d respectively.

As a result of these rather tedious calculations, we
obtain the following formula for the CrameH r}Rao
lower bound for the accuracy of the signal location
parameter x

0
under the condition of negligible cor-

relation between x
0

and A:

D(x
0
)*

p2

A2

1

+n
i/1

[Lt(x
i
!x

0
)/Lx

0
]2

. (26)

This "nal formula is valid for arbitrary shapes of
the signal t(x) and arbitrary ratio between the
characteristic scale D of the function t(x) and the
bin width D (the latter can be treated as the distance
between measured points).

Let us consider two cases. In the "rst one when
D;D, Eq. (26) can be approximated by substitu-
ting the sum in the denominator by the correspond-
ing integral:

D
n
+
i/1
C
Lt(x

i
!x

0
)

Lx
0

D
2
+P

=

~=
A
Lt
LxB

2
dx. (27)

Here D denotes the histogram bin width. Comput-
ing the corresponding integral for the signal shape
t(x)"exp(!(x/D)2) one obtains eventually the
formula

D(x
0
)*

p2

A2

1

+n
i/1

[Lt
i
/Lx

0
]2

+

p2

A2

DD

Jp/2

and its approximate estimation

dx
0
"JD(x

0
)+

p
A

JDD

(p/2)1@4
+0.89

p
A

JDD. (28)

If p/A"5%, D"4, D"1, one has dx
0
+0.089,

i.e. about 11 times smaller than the bin width.
In the second case both charasteristics scales

D and D are approximately of the same size

D&D.

In this case approximation Eq. (27) is not valid and
one should compute explicitly the sum in the de-
nominator of Eq. (26).

One application of formula (26) gives the answer
to the very important question naturally posed by
users of discrete detectors: if D&D holds, what
is the best (minimal) limiting resolution

dx
0
"JD(x

0
) in dependence of the input noise

level?

The answer can be obtained from Fig. 2. It shows
the series of curves presenting the limiting resolu-
tion dx

0
with the input noise level p/A"10% and

bin number n"20 for all graphics. The value of
dx

0
is determined in correspondence with Eq. (26)

by the formula

dx
0
*f (x

0
;D,D, n)

p
A

where the function f (x
0
; D,D, n) is determined as

f (x
0
)"

JDD

(+n
i/1

[Lt(x
i
!x

0
)/Lx

0
]2)1@2

. (29)

The curves a, b and c correspond to three values of
the ratio D/D"0.25,0.5,1. The curve d corresponds
to the asymptotic case D/D<1 when approxima-
tion (27) is valid. Positions of the signal maxima
x
0

are indicated on the axis X. Points
x
0
"0,1,2,3,4,5 correspond to the borders of adjac-

ent bins.
As can be seen from Fig. 2, the value of the

minimum error when D"D (the curve c) is almost
coincident with the asymptotic case (the curve d).
While the width D of the Gaussian instrumental
function decreases with respect to the bin size D, the
value of the minimum error begins to be strongly
dependent on the position of x

0
on the axis X. The

error reaches its minimum on a border of adjacent
bins while its maximum occurs in the middle of
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1Some easier ways are proposed in Ref. [12].

a bin. If the peak width is increasing, the error
dependence on the peak position on the X axis is
getting smoother, reaching its asymptotic value al-
most in D"D. A similar dependence was appar-
ently observed in Ref. [3], where the momentum
method was applied for estimating the position of
the peak maximum. Now one can see that such
a conclusion has the general character of and is
valid for arbitrary methods of the peak maximum
position estimation.

3.3. Double peak resolution method

As it was pointed out above, there is a probable
case when the extracted cluster is created by two (or
even more) signals. The NP algorithm is able to
produce the indication of the peak number and
some estimates of their parameters, which can be
used as initial values for the parametric algorithm.
However, if the probability of the overlapping of
three or more signals is negligible, one can test the
shape of the registered histogram by its corre-
spondence to one or two signals without applying
NP methods. Such a test can be constructed from
the second and third central moments of the histo-
gram (see Ref. [12]).

Thus we have to generalize the above methods
and algorithms to multi-signal cases. The shape of
a histogram produced by two superposing peaks
can be described as

f (x; A
1
,x(0)

1
,A

2
, x(0)

2
)

"A
1

expC!
(x!x(0)

1
)2

2p2 D
#A

2
expC!

(x!x(0)
2

)2

2p2 D. (30)

This expression depends on four parameters. To
"nd them we have to minimize a functional general-
izing Eq. (22):

L
4
"+

i

(a
i
!f (x

i
; A

1
,x(0)

1
,A

2
,x(0)

2
))2. (31)

A direct generalization of the PAM procedure on
four-parameter functional (31) would lead to treat-
ing a 5D elliptic paraboloid. To avoid this we take
into account the fact that the partial derivatives of

L
4

with respect to A
1
, A

2
are linear; so, we can

easily calculate both the amplitudes by solving the
system of two linear equations

LL
4

LA
1_2

"0. (32)

Then we can apply the above-mentioned iterative
PAM procedure for minimizing L

4
with respect to

two remaining parameters x(1)
1

, x(1)
2

. The cardinal
problem of solving this way is the most accurate
choice of initial values of parameters, since it deter-
mines the convergence and the speed of the iter-
ation process. As pointed out above, we can use the
estimations x(0)

1
, x(0)

2
obtained by our NP algo-

rithm.1
After inserting them into the linear system (32)

we can solve it to obtain A(0)
1

, A(0)
2

and then, as it
was noted above, apply the PAM procedure for
minimizing L

4
to calculate the next iterative

values of x(1)
1

, x(1)
2

. The whole procedure is repeated
iteratively until the corrections become less than
a prescribed value or the number of iterations at-
tains its limits. Coming back to the problem of 2D
estimation of the SDD signal parameters we use the
above solution to obtain k estimations (AK

j
, RK

j
) for

each x(
j
"R

j
u
j
. The sought for positions of the

signal (R
0
,x

0
) can be calculated as the center of

gravity of these k estimations:

R
0
"

+
j
AK

j
RK

j
+

j
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j

, x
0
"

+
j
AK

j
x(
j

+
j
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j

. (33)

To obtain its amplitude A we can minimize the
function

¸(A)"+
j

(AK
j
!N(x(

j
, RK

j
; A,x

0
, R

0
))2 (34)

where the function N(x, r; A,x
0
,R

0
) is taken from

Eq. (1). This gives

AK "

+
j
AK

j
exp[!(x(
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Fig. 3. The numerical test of two peak reconstruction from the
16 bins histogram, size of 1 bin equals 32; (a) input data: 1 and
2 are marked correspondingly as the histogram and the instru-
mental function, SNR"60 dB; (b) output data: the solid line
1 presents the original peaks, black squares 2 present peaks
reconstructed by DCONV program [19]. The insert shows the
distribution of deviations between simulated and estimated peak
positions obtained by the parametric PAM algorithm with start-
ing values provided by the NP algorithm.

4. Simulation results

The method was tested using both the Monte-
Carlo simulated and the real data. To simulate
a histogram data set for testing we integrate se-
quentially the Gaussian sum (30) in each bin for
various D. Then random normally distributed noise
with p

/0*4%
is added to each bin.

Two examples of resolving multiple peaks from
the unimodal histogram by the NP method are
presented in Figs. 3 and 4. In Fig. 3 two peaks lying
apart only for one-half of the bin width were
simulated for p

/0*4%
"0.1% of the mean amplitude

value and signal half-width equal to 2 bin widths
(Fig. 3a). In Fig. 3b it is shown how the NP method
resolves both peaks and the accuracy of PAM is
presented as the distribution of deviations from the
modelled and estimated positions of one of these
peaks. The combined NP}PAM algorithm recon-
structs pulse positions with an accuracy better than
0.01 of bin width.

An even more impressive example of three peak
resolution from the unimodal histogram is given in
Fig. 4.

The qualitative characteristics of the correspond-
ing deviations between the true data and the recon-
structed ones by the DCONV program are given in
Table 1.

The accuracy dependence of the COG and PAM
procedures on the noise standard deviation is
shown in Fig. 5. The simulation was done for single
symmetrical signals in order to have the best COG
performance, but its accuracy is twice as bad as the
PAM. The bottom curve presents the limiting accu-
racy determined by the CrameH r}Rao formula (28).
As one can see for p

/0*4%
less than 10% the PAM

procedure reaches almost its limiting accuracy.
Results of the comparative testing of the COG

and PAM methods on double overlapping asym-
metrical signals are presented in Fig. 6. To provide
a data set for testing a simple routine is written,
which simulates histograms according to Eq. (20)
for two overlapped `asymmetricalaGaussians with
p
0
"1.626#0.2097]10~2x

0
and corresponding

D. Contributions of every signal into each bin are
superposed (summed). Then to each bin a random
noise is added with the normal distribution with
p"10% of the mean amplitude value of pulses. As

seen in Fig. 6, the COG double peak resolution is
unsatisfactorily large exceeding the bin width on
distances between peaks even greater than 3p

0
(see

the part of the upper curve lying above the line
RMS"1). However, the main defect of the COG
estimation is its statistical bias the range of which is
around 1.3}1.5 of bin width.

Besides the above-shown accuracy dependence,
we also studied simulated data for the dependence
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Fig. 4. Three peak reconstruction by the same program
DCONV as in Fig. 3: (a) input data: histogram is marked by 1,
instrumental function by 2; (b) output data: lines 1 present the
original peaks, lines 2 present the reconstructed peaks.

Table 1
The actual deviation of the line positions and the area under
each of the three peaks in the example presented in Fig. 4

Relative error
of reconstruction (%)

Position 0.07 0.33 0.12
Area under the peak 0 2.7 3.8
Peak no. 1 2 3

Fig. 5. RMS of the single signal position estimated by COG
method (upper curve), by PAM method (middle curve) and the
CrameH r}Rao lower bound (lower curve) as the function of the
noise standard deviation. Both axes are measured in bin width.

Fig. 6. Double pulse resolution versus distance between over-
lapped pulses (asymmetrical model). The upper curve presents
results of the COG method, the lower curve shows results of
PAM method. Axis units are in bin width. The line RMS"1
separates the area of unacceptable results (greater than one bin
width).

of the PAM algorithm e$ciency upon the gap
between pulses and found that e$ciency of the
double pulse reconstruction is on the level of 93%
for gaps greater than 1.5p

0
(where p

0
is the Full

Width of Half Maximum (FWHM)). However, it
dramatically decreases to the level of 8% for gaps in
the range (0.7}1.5) p

0
. In order to compare the

quality of the PAM minimization procedure with
the well-known MINUIT package [21] we con-
sider calculations of the double pulse resolution by

E.A. Kolganova et al. / Nuclear Instruments and Methods in Physics Research A 443 (2000) 464}477 475



Fig. 7. s2 distribution for PAM (a) and MINUIT (b) versus
distance between pulses (normalized to p).

both the programs for simulated data as well as for
the CERES Pb}Au'95 data. Our calculations
show that the PAM algorithm in comparison
with MINUIT has the same or even better
accuracy for the double peak parameter recon-
struction, being 5}7 times faster in the range
of distances from 7 time-bin up to 1.5p

0
.

Moreover, while PAM can process events even
with gaps between pulses equal to 2 bin widths, the
MINUIT method cannot process any case when
this distance is smaller or equal to 2.5. Fig. 7 shows
the distributions of the mean value of s2 as a func-
tion of the distance between pulses (normalized to
p) obtained by MINUIT and PAM for Pb}Au'95
data [12]. As one can see, the s2 values of PAM are
much lower than such values for the MINUIT
method. This proves the better performance of the
PAM "t.

5. Conclusion

Various parametric and non-parametric ap-
proaches for e!ective and precise determination of
characteristics of signals registered by discrete de-
tectors were studied under conditions of contempor-
ary HEP experiments. The study was mainly focused
on the quite delicate problem of the fast and most
accurate resolution of overlapping signals.

It is proved that the recovery of particle coordi-
nates by detectors with intrinsic resolution deter-
mined by the instrumental function and "nite size
of detector bins can be reduced to a non-parametric
solution of the standard convolution integral equa-
tion with the kernel obtained by the convolution of
the given instrumental function and the character-
istic function of the histogram bin.

It is shown that a non-parametric method imple-
mented by the modi"ed DCONV routine of the
RECOVERY program package is a powerful tool,
which for known instrumental function allows res-
olution not only of doublets, but also of triplets of
signals being so close that their superposition was
registered as a unimodal histogram. One should
keep in mind, however, that these remarkable
features have a natural resolution limit determined
by the existing noise level. This follows from the
close analogy between the processing of noisy ex-
perimental data and the Shannon theorem on the
highest possible transmission rate of information
through a noisy channel. Detailed consideration of
the analogy given above allows us to calculate the
minimum attainable signal resolution for the given
SNR.

The PAM has been proposed aiming to attain
better accuracy and speed. It is iterative and can
use either NP or COG methods for providing the
initial values of parameters. The comparative study
of the PAM performance shows that it surpasses
both the COG method in accuracy and the more
sophisticated method used by the MINUIT pack-
age in speed and e$ciency.

The CrameH r}Rao inequality is applied to derive
the lower-bound expression for the accuracy limit
of the signal registered by a discrete detector with
the given granularity and the noise level. It allows
to appreciate the PAM performance, which ap-
pears surprisingly close to this limiting accuracy.
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One of the advantages of the PAM is the possi-
bility of generalizing it for a non-Gaussian shape of
the signal. This is important since in reality signals
can be symmetrical or slightly asymmetrical but
not Gaussian. For the asymmetrical case a signal
model as a combination of two Gaussians with
di!erent p's has been proposed. To be closer to real
data the coe$cients of this model have been "tted
to the representative sample of the real Pb}Au data
and, then used for simulating the sample with sig-
nal doublets. The comparison of PAM and COG
results obtained on this sample proves again the
satisfactory accuracy and e$ciency of the PAM
and con"rms that despite its popularity the COG
method should not be applied in any case where
signal asymmetry or/and overlapping can be
expected.
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