Федеральное государственное бюджетное учреждение науки Институт физических проблем им. П.Л. Капицы Российской академии наук

> Московский физико-технический институт (государственный университет)

> > Кафедра физики и техники низких температур

Магистерский диплом

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА СВОЙСТВА МУЛЬТИФЕРРОИКА CUCRO₂

Готовко С.К.
C IF
Свистов Л.Е.
Холин Д.И.
Андреев А.Ф.

Москва 2018

Оглавление

1	Введение	2
2	Кристаллическая структура и магнитные свойства CuCrO ₂	3
	2.1 Структура CuCrO ₂	3
	2.2 Теоретическое обоснование свойств CuCrO ₂ и энергия спиновой структуры в	
	рамках теоретической модели	5
	2.3 Спектр АФМР в CuCrO ₂	6
3	Техника эксперимента	8
	3.1 Приготовление образцов	8
	3.2 Модуляционный метод	8
4	Экспериментальные результаты	11
5	Обсуждение результатов	18
6	Заключение	19
7	Благодарности	20

Введение

СuCrO₂ – квазидвумерный фрустрированный антиферромагнетик ($S = 3/2, T_N \approx 24$ K) с треугольной кристаллической решёткой. Магнитные ионы Cr³⁺ расположены в узлах правильной треугольной решётки в кристаллической плоскости *ab*. Согласно данным экспериментов по нейтронному рассеянию, при переходе в магнитоупорядоченное состояние в кристалле формируется несоизмеримая планарная структура с волновым вектором $k_{ic} = (0.329, 0.329, 0)$, близким к волновому вектору 120°-ной планарной структуры (1/3, 1/3, 0) [1]. Также переход в магнитоупорядоченное состояние состояние сопровождается небольшим искажением одной из сторон треугольной решётки ($\Delta a/a \approx 10^{-4}$) и возникновением спонтанной электрической поляризации [2], связь которой с магнитной структурой кристалла является предметом наших исследований.

Низкочастотные возбуждения спиновой плоскости в магнитоупорядоченном состоянии могут рассматриваться как совместные колебания спиновой плоскости и вектора спонтанной поляризации, направление которого определяется ориентацией спиновой плоскости. Частоты этих колебаний зависят как от внешнего магнитного, так и от внешнего электрического полей.

В веществах с линейным магнитоэлектрическим эффектом влияние электрического поля на собственные частоты обычно малы в меру малости наведенной поляризации в магнитных полях, используемых в экспериментах ([3], [4]). Совсем другую ситуацию можно ожидать в случае мультиферроика – в этом случае спонтанный электрический момент, обусловленный магнитоупорядочением, велик.

В данной работе представлены результаты исследования влияния внешнего электрического поля на низкочастотный спектр антиферромагнитного резонанса (AФMP) кристалла CuCrO₂ в полях, много меньших поля насыщения ($H_{sat} \approx 280$ Tл). Наблюдаемые результаты обсуждаются в рамках феноменологической теории магнитных свойств CuCrO₂, развитой в [5].

Кристаллическая структура и магнитные свойства CuCrO₂

2.1 Структура CuCrO₂

Кристаллическая структура CuCrO₂ представляет собой правильные треугольные решётки, образованные магнитными ионами Cr³⁺ и немагнитными ионами Cu⁺ и O²⁻, расположенные друг над другом вдоль оси симметрии C3 (ось c) в последовательности Cr–O–Cu–O–Cr (пространственная группа $R\bar{3}m$, a = 2.98 Å и c = 17.11 Å при комнатной температуре [1]. Положения магнитных ионов Cr³⁺ в проекции на кристаллографическую плоскость *ab* показаны на рис. 2.1(а). Плоскости треугольной структуры, расположенные друг над другом на расстоянии c/3, показаны разными цветами.

Исследования методом нейтронной дифракции показали, что магнитное упорядочение в CuCrO₂ происходит в два этапа [6,7] - при T = 24.2 К происходит двумерное упорядочение (в плоскостях треугольной структуры), ниже T = 23.6 К устанавливается трёхмерный порядок с несоизмеримым волновым вектором $\mathbf{k}_{ic} = (0.329, 0.329, 0)$, направленным вдоль искажённой стороны треугольной решётки [2]. Магнитные моменты ионов Cr³⁺ описываются следующим выражением:

$$\mathbf{M}(\mathbf{r}_{i,j}) = M_1 \mathbf{e}_1 \cos(\mathbf{k}_{ic} \mathbf{r}_{i,j} + \theta) + M_2 \mathbf{e}_2 \sin(\mathbf{k}_{ic} \mathbf{r}_{i,j} + \theta),$$
(2.1)

где \mathbf{e}_1 и \mathbf{e}_2 – два ортогональных единичных вектора, определяющих ориентацию спиновой плоскости с вектором нормали $\mathbf{n} = \mathbf{e}_1 \times \mathbf{e}_2$, $\mathbf{r}_{i,j}$ - радиус-вектор к (i, j)-му магнитному иону, θ - произвольная фаза. Ориентация спиновой плоскости и волновой вектор магнитной структуры схематически показаны на рис. 2.1(б). В нулевом магнитном поле \mathbf{e}_1 направлен вдоль $[1\bar{1}0]$, $M_1 = 2.2(2) \ \mu_B$, \mathbf{e}_2 направлен вдоль [001], $M_2 = 2.8(2) \ \mu_B$ [6]. Угол между магнитными моментами соседних ионов Cr^{3+} в соответствии с наблюдаемым значением \mathbf{k}_{ic} вдоль искажённой стороны треугольной решётки составляет 118.5°, что близко к значению 120° в правильной треугольной структуре.

Согласно кристаллографической симметрии при $T > T_c$, в упорядоченном состоянии

 $(T < T_c)$ мы ожидаем *шесть* магнитных доменов. Волновой вектор в каждом из доменов может быть направлен вдоль одной из трёх сторон треугольной решётки, вдоль каждой из сторон возможно два противоположных направления. Согласно [8–10], распределение доменов зависит от истории охлаждения образца.

Эксперименты по неупругому рассеянию нейтронов показали, что CuCrO₂ может рассматриваться как квазидвумерный антиферромагнетик [11]. Спиральная магнитная структура определяется сильным обменным взаимодействием между соседними ионами Cr^{3+} в треугольных плоскостях кристаллической решётки с обменным интегралом $J_{ab} = 2.3$ мэВ. Межплоскостные взаимодействия слабее внутриплоскостных примерно в 20 раз и фрустрированы.

Одновременно с установлением трёхмерного магнитного порядка в образце возникает электрическая поляризация, величина и направление вектора которой определяются магнитной структурой CuCrO₂.

Исследования намагниченности и электрической поляризации, результаты ЯМР- и АФМРэкспериментов [9, 10, 12] показали, что в достигаемых в наших экспериментах полях ($\mu_0 H < 14 \text{ Tл} \ll \mu_0 H_{sat}$ ($\mu_0 H_{sat} \approx 280 \text{ Tл}$)) реализуется планарная магнитная структура. Ориентация спиновой плоскости определяется её взаимодействием с кристаллическим окружением и приложенными магнитным и электрическим полями.

Рис. 2.1: (а) Позиции ионов Cr^{3+} в $CuCrO_2$ в проекции на плоскость *ab*. α, β, γ - три плоскости треугольной структуры, располагающиеся друг над другом на расстоянии c/3, в узлах которой находятся ионы Cr^{3+} . (b) Схема спиновой структуры при $\mathbf{H}=0$ для $\mathbf{k}_{ic} \parallel [110]$ (спины с одинаковыми номерами из (а) сонаправлены).

2.2 Теоретическое обоснование свойств CuCrO₂ и энергия спиновой структуры в рамках теоретической модели

Основные свойства антиферромагнетика CuCrO₂ находят естественное объяснение в теории магнитных фазовых переходов Дзялошинского–Ландау [5].

Рассмотрение обменных взаимодействий показывает, что кристаллографическая симметрия CuCrO₂ допускает наличие инварианта Лифшица, что объясняет возникновение геликоидальной спиновой структуры с несоизмеримым волновым вектором. То, что волновой вектор магнитной структуры CuCrO₂ (0.329, 0.329, 0) близок к волновому вектору 120-ти градусной структуры (1/3, 1/3, 0), показывает малость инварианта Лифшица по сравнению с внутриплоскостными обменными взаимодействиями. Симметрийный анализ релятивистских эффектов в CuCrO₂ [5] объясняет экспериментально наблюдаемые магнитную анизотропию и возникновение электрической поляризации, сонаправленной с вектором **n**.

В обозначениях [5], зависящая от ориентации спиновой плоскости относительно кристаллографических осей и внешних магнитного и электрического полей часть энергии CuCrO₂ имеет следующий вид:

$$U = \frac{\beta_1}{2}n_z^2 + \frac{\beta_2}{2}n_y^2 - \frac{\chi_{||} - \chi_{\perp}}{2}(\mathbf{nH})^2 - \lambda_{\perp}(n_x E_x + n_y E_y) - \lambda_{\parallel} n_z E_z$$
(2.2)

Первые два слагаемых описывают энергию анизотропии. *Трудная* ось для вектора нормали **n** направлена вдоль оси **z**, следующая ось **y** перпендикулярна искажённой стороне треугольной структуры ($\beta_1, \beta_2 > 0$). Направления осей **x**, **y**, **z** показаны на рис. 2.1. Константа анизотропии вдоль направления *c* на два порядка превосходит константы анизотропии в плоскости ab [9]: $\beta_1 = 355 \text{ кДж/м}^3$ и $\beta_2 = 3.05 \text{ кДж/м}^3$.

При приложении магнитного поля перпендикулярно одной из сторон треугольной структуры (**H** \parallel [110]) наблюдается спин-реориентационный переход (спин-флоп) при $\mu_0 H_c \approx$ 5.5 Тл, описываемый как переворот вектора нормали **n** от направления (110) ($\mathbf{n} \perp \mathbf{H}$) к (110) (**n** || **H**) [8,9,12]. Такой переход возникает вследствие слабой анизотропии магнитной восприимчивости спиновой структуры ($\chi_{\parallel} \approx 1.045 \chi_{\perp}$), где символы \parallel и \perp соответствуют полям, направленным вдоль и перпендикулярно к п. Поле такого перехода определяется как $H_c^2 = \beta_2/(\chi_{\parallel} - \chi_{\perp})$. Третье слагаемое в уравнении (2.2) учитывает анизотропию магнитной восприимчивости. Экспериментальное значение восприимчивости составляет $\chi_{\perp} \approx 2400 \; {\it Д}{\it ж}/{\it T}{\it n}^2{\it m}^3 \;$ [13, 14]. Последние два слагаемых описывают взаимодействие спонтанной электрической поляризации $\mathbf{p} = (\lambda_{\perp} n_x, \lambda_{\perp} n_y, \lambda_{\parallel} n_z)$ с внешним электрическим полем (E_x, E_y, E_z) . Экспериментальное значение электрической поляризации λ_{\perp} оценивается как 120÷130 µK/м² [13]. Сравнивая величины взаимодействий спиновой системы с кристаллическим окружением (первые два слагаемых уравнения) и взаимодействий с магнитным и электрическим полями, можно заключить, что взаимодействие с электрическим полем в экспериментально исследуемом диапазоне полей Е мало (например, спин-флоп в электрическом поле, согласно теоретическому предсказанию в [5], ожидается при внешнем электрическом поле $E_c \approx 30000 \text{ kB/m}$; поля, прикладываемые к образцу в экспериментах, обсуждающихся далее, намного меньше: E < 1000 кB/м).

2.3 Спектр $A\Phi MP$ в CuCrO₂

Для любой ориентации внешнего магнитного поля существует три ветви колебаний спиновой плоскости - одна с нулевой частотой (колебания спиновой плоскости вокруг вектора **n**), вторая - высокочастотная с щелью 340 ГГц и третья - низкочастотная - с щелью 31 ГГц. Частотно-полевые зависимости низкочастотной ветви колебаний спиновой плоскости ($\nu(H_R)$), вычисленные для модели, описываемой уравнением (2.2), показаны на рис. 2.2. Зависимости были вычислены для различных направлений внешнего магнитного поля **H** в плоскости *ab*, для расчёта использовались следующие параметры: $\chi_{\parallel}/\chi_{\perp} = 1.042, H_c = 5.5$ Тл, $\nu(0) = 31.6$ ГГц. Эти параметры согласуются со значениями, определяющими анизотропную часть энергии в уравнении (2.2). Расчёты проводились в рамках теории спиновой динамики для магнетиков с доминирующим обменным взаимодействием [15].

Рис. 2.2: Линии показывают частотно-полевые зависимости ($\nu(H_R)$), вычисленные для различных углов α между **H** и [110]. Символы показывают $\nu(H_R)$, измеренные в экспериментальной ориентации поля **H**, показанной на рисунке справа (поле приложено перпендикулярно к одной из сторон треугольной структуры); здесь чёрной линией схематически обозначена проекция спиновой плоскости на плоскость *ab* для домена "А красными линиями – для доменов "В" и "С". Чёрные символы соответствуют линиям поглощения от домена "А" ($\alpha = 90^{\circ}$), а белые символы – линиям поглощения от доменов "В" и "С" ($\alpha = \pm 30^{\circ}$). T = 4.2 К.

Зависимость $\nu(H_R)$ при **H** || [110] имеет резкую особенность при H_c . При полях, много больших H_c зависимости асимптотически приближаются к линейной с наклоном, определяемой анизотропией восприимчивости спиновой структуры – $\gamma H \sqrt{\chi_{\parallel}/\chi_{\perp} - 1}$.

Экспериментальные значения H_R , измеренные на разных частотах, показаны на рис. 2.2 символами. В эксперименте магнитное поле **H** прикладывалось перпендикулярно одной из сторон треугольной решётки, такое направление было выбрано и в АФМР-экспериментах в электрическом поле (см. рис. 3.1). Чёрные квадраты соответствуют линиям поглощения в домене "A", где **H** || [110], белые квадраты - линиям поглощения от двух других доменов, "B" (**H** || [210]) и "C" (**H** || [120]). Экспериментальные точки согласуются с теоретическими ожиданиеми (чёрная и красная жирные кривые). При таком направлении внешнего магнитного поля линии поглощения в домене "A" и доменах "B", "C" удалены друг от друга, что даёт возможность изучать их отдельно.

Техника эксперимента

3.1 Приготовление образцов

Образцы CuCrO₂ были выращены в Университете Теннеси, CША (H.D. Zhou) в виде шестиугольных пластин и были распилены на пластины толщиной 0.31 мм, размеры граней $\approx 1 \times 3 \text{ мм}^2$. Грани пластин были перпендикулярны одной из сторон треугольной структуры. Образцы приклеивались к стенке резонатора проходного типа, эта стенка играла роль одной из обкладок конденсатора. К противоположной грани образца, покрытой серебряной пастой, подводился электрод. Измерительная ячейка находилась в изолированном объёме внутри криостата со сверхпроводящим соленоидом. Конструкция низкотемпературной части прибора позволяла проводить измерения в области магнитных полей до 10 Тл, электрических полей до 750 кВ/м и температур $1.3 < T \leq 100$ K; схема приведена на левой панели рис. 3.1; взаимная ориентация магнитного и электрического полей и кристаллографических осей показана на правой панели рис. 3.1.

3.2 Модуляционный метод

Сдвиг линий поглощения постоянным электрическим полем E_{-} был недостаточен для непосредственного наблюдения, поэтому для исследования влияния электрического поля на спектр AФMP использовался модуляционный метод. В описанных далее экспериментах прикладывалось переменное электрическое поле E_{\sim} и с помощью фазочувствительного усилителя на частоте модуляции переменного электрического поля исследовался *переменный* сдвиг резонансной кривой. Такой метод ранее использовался в [3], [4]. Результат не зависел от частоты модуляции E_{\sim} .

Помимо E_{\sim} к образцу для его поляризации прикладывалось также и постоянное электрическое поле E_{-} . После приложения E_{-} достаточной величины в образце остаются только домены с выгодным (вдоль электрического поля) направлением поляризации [12]. Направления векторов электрической поляризации в таких доменах показаны на рис. 3.1 красными стрелками. Амплитуда переменного электрического поля E_{\sim} была меньше величины постоянного электрического поля E_{\sim} была меньше величины постоянного электрического поля E_{\sim} во избежание электрической деполяризации образца.

Рис. 3.1: Левая панель: схема экспериментальной ячейки: прямоугольный резонатор с отверстиями связи и волноводами, образец в форме плоско-параллельной пластины, покрытый серебряной пастой, выполняющей функцию электрода. Правая панель: три возможных магнитных домена в образце, обозначенных как "А", "В", "С", и взаимная ориентация приложенных электрического и магнитного полей и кристаллографических осей в образце. Толстые линии на схеме вдоль высот треугольников показывают проекции спиновых плоскостей при H = 0. Толстая сторона треугольника показывает направление волнового вектора магнитной структуры в каждом домене. Большая грань образца перпендикулярна одной из сторон треугольника. Для домена "А" $H \parallel [1\overline{10}]$ и $E \parallel [110]$; для "В" $H \parallel [210]$ и $E \parallel [0\overline{10}]$; и для "С" $H \parallel [\overline{120}]$ и $E \parallel [\overline{100}]$. Красные и чёрные стрелки показывают два возможных направления вектора электрической поляризации в доменах "А", "В" и "С".

В описанных далее экспериментах подаваемая СВЧ-мощность модулируется по амплитуде "меандром" (частота модуляции ≈ 1 кГц) и по частоте синусоидально (частота модуляции ≈ 100 Гц). Частотная модуляция применялась для того, чтобы уменьшить влияние перестройки СВЧ резонатора, амплитудная модуляция применялась для того, чтобы уменьшить отношение сигнала к шуму при при использовании методики фазочувствительного детектирования при измерении величины проходящей через резонатор СВЧ мощности. Прошедшая через резонатор мощность $P_{tr}(H)$ измеряется с помощью фазочувствительного усилителя с опорным сигналом амплитудной модуляции. Амплитуда осциллирующей под действием внешнего переменного электрического поля части проходящей мощности – $P_{tr}^{\sim}(H)$ – измеряется с помощью фазочувствительного детектора с опорным сигналом модуляции переменного электрического поля (частота модуляции ≈ 300 Гц). Измерение обоих этих параметров позволяет определить сдвиг резонансной кривой переменным электрическим полем и, следовательно, зависимость частоты собственных колебаний магнитной системы от амплитуды колебаний переменного электрического поля.

Измеренная таким образом $P_{tr}^{\sim}(H)$ должна иметь форму производной резонансной кривой (см. схематическое изображение на рис. 3.2)

Рис. 3.2: Верхняя панель: схематическое изображение резонансной кривой и резонансной кривой, сдвинутой под действием **E** в случае сонаправленности и противонаправленности векторов **p** и **E**. Нижняя панель: схематическое изображение ожидаемого отклика $P_{tr}^{\sim}(H)$.

Экспериментальные результаты

Зависимость проходящей через резонатор высокочастотной мощности P_{tr} от внешнего постоянного поля H, измеренная при T = 4.2 К и $\nu = 42.2$ ГГц, показана на верхней панели рис. 4.1. Низкополевая линия поглощения соответствует резонансу от домена "А", широкая линия поглощения в высоких полях соответствует резонансам от доменов "В" и "С". Особенность при $\mu_0 H_c = 5.5$ Тл соответствует спин-флопу в домене "А". Для монополяризации образца к нему прикладывалось постоянное электрическое поле E_{-} . Амплитуда колебаний проходящей мощности P_{tr}^{\sim} на частоте модуляции переменного электрического поля E^{\sim} , измеренная с помощью фазочувствительного усилителя, показана на средней панели. Отклик находился в фазе с E^{\sim} , приложенным к образцу. Положительный знак P_{tr}^{\sim} соответствует колебаниям P_{tr} в фазе с E^{\sim} , а отрицательный знак соответствует колебаниям в противофазе. Значения P_{tr} и P_{tr}^{\sim} представлены в относительных, но одинаковых единицах. Красные и чёрные кривые показывают $P_{tr}^{\sim}(H)$, измеренную при двух противоположных направлениях поля **H**. P_{tr}^{\sim} не зависит от полярности **H** с точностью, достигаемой в эксперименте. Нижняя панель рис. 4.1 показывает линейность P_{tr}^{\sim} от E^{\sim} , наблюдаемую при $|E^{\sim}| < |E_{-}|$.

Верхняя панель рис. 4.3 показывает полевую зависимость $P_{tr}^{\sim}(H)$ в окрестности линии поглощения от домена "А" при разных значениях постоянного электрического поля E_{-} . Полевая зависимость P_{tr}^{\sim} имеет форму искажённой производной линии поглощения по полю. Нижняя панель рисунка показывает зависимость амплитуды P_{tr}^{\sim} от величины E_{-} в магнитных полях H вблизи экстремумов (отмечены на верхней панели пунктирными линиями). График показывает, что амплитуда $P_{tr}^{\sim}(H)$ в полях выше, чем $E_{-} = 500$ кВ/м, выходит на насыщение, из чего следует, что величина $E_{-} = 500$ кВ/м является достаточной для полной поляризации образца.

Переменная составляющая прошедшей через резонатор высокочастотной мощности $P_{tr}^{\sim}(H)$ в присутствии внешнего переменнного электрического поля в электрически поляризованном образце может быть поделена на две части. Первая пропорциональна производной прошедшей мощности по полю, а вторая повторяет форму кривых поглощения. Первая часть относится к линейному по полю сдвигу кривой поглощения в присутствии внешнего электрического поля E^{\sim} , а вторая часть относится к изменению интенсивности резонансного поглощения в присутствии E^{\sim} . Первая часть хорошо воспроизводима и может быть описана в рамках

Рис. 4.1: Верхняя панель: полевая зависимость проходящей СВЧ-мощности $P_{tr}(H)$. Средняя панель: полевые зависимости амплитуды переменной составляющей проходящей СВЧмощности P_{tr}^{\sim} , измеренной с помощью синхронного усилителя на частоте приложенного перменного электрического поля E^{\sim} . $E_{-} = +500 \text{ кB/м}$ и $E^{\sim} = 250 \text{ кB/м}$. Красная и чёрная кривые соответствуют противоположным направлениям **H**. Стрелки на оси абсцисс показывают поле спин-флопа H_c в домене "А". Нижняя панель: зависимости $|P_{tr}^{\sim}(E^{\sim})|$ при $H = 1.02, 1.66 \text{ Тл. } \nu = 42.2 \Gamma \Gamma \mu$, T = 4.2 K.

теоретической модели, тогда как вторая зависела от приготовления электродов и истории охлаждения образца. Возможно, вторая часть отклика связана с перераспределением доменов в образце под влиянием E^{\sim} . Далее обсуждается отклик $P_{tr}^{\sim}(H)$, связанный со сдвигом кривой поглощения внешним электрическим полем.

Так как сдвиг резонансного поля H_R в электрическом поле мал, изменение прошедшей мощности под действием внешнего электрического поля можно записать как

$$P_{tr}(H, E_{-} + E^{\sim}) - P_{tr}(H, 0) =$$

$$\frac{\partial P_{tr}(H)}{\partial H} \cdot \frac{\partial H_R}{\partial E} \cdot (E_{-} + E^{\sim}),$$

$$(4.1)$$

где амплитуда переменного электрического поля E^{\sim} , в случае полностью поляризованного образца, определяется амплитудой переменного электрического напряжения, поделённой на расстояние между электродами. Частоты АФМР для магнитного домена "А" $\nu(H, E)$ в рамках модели потенциальной энергии спиновой системы, описываемой уравнением (2.2), в экспериментальной ориентации полей имеют следующий вид:

$$H < H_c: \quad \nu = \gamma \sqrt{\frac{\beta_2 + \lambda_\perp E}{\chi_\perp} + H^2}$$

$$H > H_c: \quad \nu = \gamma \sqrt{-\frac{\beta_2 + \lambda_\perp E}{\chi_\perp} + \frac{\chi_\parallel - \chi_\perp}{\chi_\perp} H^2}$$

$$(4.2)$$

Здесь, положительный знак E соответствует случаю, когда **E** и **p** сонаправлены. Из уравнений (4.2) и (4.3) получаем ожидаемое значение $P_{tr}^{\sim}(H)$:

$$P_{tr}^{\sim} = \frac{\partial P_{tr}(H)}{\partial H} \cdot \frac{\lambda_{\perp}}{2\chi_{\perp}H_R} E^{\sim}$$
(4.3)

Из этого уравнения следуют ожидаемые в рамках теоретической модели свойства P_{tr}^{\sim} :

- 1. независимость от знака внешнего постоянного магнитного поля Н;
- 2. пропорциональность амплитуде E^{\sim} ;
- 3. зависимость от знака электрической поляризации.

Эти свойства были подтверждены экспериментально (см. рис. 4.2–4.5). Кривые $P_{tr}(H)$ и $P_{tr}^{\sim}(H)$ на рис. 4.1, 4.2, 4.4 и 4.5 были измерены в относительных, но общих единицах, что позволяет определить из эксперимента абсолютное значение λ_{\perp} и, следовательно, электрической поляризации. При обработке экспериментальных данных первую часть $P_{tr}^{\sim}(H, |E_{\perp}|)$, которая хорошо воспроизводится, можно получить как полуразность откликов при $\pm E_{\perp}$, а вторую – как полусумму откликов при $\pm E_{\perp}$, вследствие независимости второй "неконтроллируемой" части P_{tr}^{\sim} от E_{\perp} .

Полевые зависимости $P_{tr}(H)$ и $P_{tr}^{\sim}(H)$, измеренные при E_{-} разных знаков, показаны на рис. 4.2 на верхней и нижней панелях. Кривые I и IV на нижней панели были измерены при положительном E_{-} при возрастании и убывании постоянного магнитного поля H соответственно. Кривые II и III были измерены при отрицательном знаке постоянного электрического поля. Направления снятия зависимостей показаны на рисунке стрелками. Знак электрического поля E_{-} переключался при H = 7.5 Тл. Показано, что знак $P_{tr}^{\sim}(H)$ определяется направлением электрической поляризации в образце. Наблюдаемая $P_{tr}^{\sim}(H)$ соответствует сдвигу линии поглощения в меньшие поля на временных интервалах, когда переменное электрическое поле \mathbf{E}^{\sim} сонаправлено с поляризацией в образце, и в большие поля на временных интервалах, когда \mathbf{E}^{\sim} антипараллельно поляризации. Гистерезисное поведение $P_{tr}^{\sim}(H)$, наблюдаемое в высоких магнитных полях, согласуется с гистерезисным поведением зависимости электрической поляризации от магнитного поля в экспериментах [12]. Величина электрического поля, достаточная для поляризации образца, возрастает с магнитным полем. Вследствие этого смена знака поляризации образца постоянным $E_{-} = 500 \text{ kB/m}$ происходит только в магнитных полях меньше 5 Тл.

Рис. 4.2: Верхняя панель: полевая зависимость P_{tr} . Нижняя панель: четыре последовательных полевых зависимости P_{tr}^{\sim} , измеренные при $E^{\sim} = 250 \text{ kB/m}$. Кривые I и IV были измерены при $E_{-} = +500 \text{ kB/m}$ (красные кривые), а II и III были измерены при $E_{-} = -500 \text{ kB/m}$ (синие кривые). Направления снятия зависимостей показаны на рисунке стрелками. На вставке показана полевая зависимость $P_{tr}^{\sim}(H)$ в окрестности линии поглощенияот домена "А". $\nu = 45.6 \Gamma \Gamma \mu$, T = 4.2 K.

Верхняя и нижняя панели рис. 4.4 показывают полевые зависимости $P_{tr}(H)$ и $P_{tr}^{\sim}(H)$ в окрестности низкополевой линии поглощения (от домена "A"), измеренные при величинах постоянного электрического поля $E_{-} = 0$ и $E_{-} = \pm 500$ кВ/м. Нижняя панель показывает алгебраические полусумму и полуразность $P_{tr}^{\sim}(H)$, измеренной при $E_{-} = \pm 500$ кВ/м (пунктирные кривые). Алгебраическая полусумма близка к $P_{tr}^{\sim}(H)$, измеренной при $E_{-} = 0$, тогда как полуразность хорошо описывается масштабированной производной прошедшей мощности по полю (dP_{tr}/dH) . Полученная таким образом полуразность откликов повторяема, тогда как полусумма зависит от метода приготовления электродов и истории охлаждения образца. Полусумма $(P_{tr}^{\sim}(E_{-} = +500 \text{ kB/M}) + P_{tr}^{\sim}(E_{-} = -500 \text{ kB/M}))/2$ хорошо аппроксимируется

Рис. 4.3: Верхняя панель: $P_{tr}^{\sim}(H)$, измеренная при $\nu = 42.2$ ГГц, T = 4.2 К и различных значениях постоянного электрического поля E_{-} . $E^{\sim} = 250$ кВ/м. Нижняя панель: $P_{tr}^{\sim}(E_{-})$ при H = 1.01, 1.07 Тл.

масштабированием кривой поглощения $P_{tr}(H)$.

Рис. 4.5 показывает полевые зависимости $P_{tr}(H)$ и $P_{tr}^{\sim}(H)$, измеренные при $E_{-} = \pm 500 \text{ kB/m}$, $\nu = 38.6 \ \Gamma\Gamma$ ц и $T = 4.2 \ \text{K}$. Здесь, алгебраическая полусумма откликов относительно мала. На нижней панели показаны полуразность $P_{tr}^{\sim}(H)$, измеренных при $E_{-} = \pm 500 \ \text{kB/m}$ и $\nu = 38 \ \Gamma\Gamma$ ц, и её аппроксимация масштабированием производной прошедшей мощности $P_{tr}(H)$ по полю. Для аппроксимации были использованы два разных коэффициента масштабирования – для низкополевой кривой поглощения от домена "А" ($\mu_0 H < 1.1 \ \text{Тл}$) масштабирующий коэффициент примерно в два раза меньше, чем коэффициент для высокополевой кривой поглощения от доменов "В" и "С".

Рис. 4.4: Верхняя панель: полевые зависимости $P_{tr}(H)$. Средняя панель: $P_{tr}^{\sim}(H)$, измеренная при постоянных электрических полях $E_{-} = 0$ и $E_{-} = \pm 500$ кВ/м. $E^{\sim} = 250$ кВ/м. Нижняя панель: полевые зависимости алгебраических полусуммы и полуразности $P_{tr}^{\sim}(H)$, измеренной при $E_{-} = +500$ кВ/м и $E_{-} = -500$ кВ/м (синяя и красная пунктирные кривые соответственно). Алгебраическая полусумма близка к $P_{tr}^{\sim}(H)$, измеренной при $E_{-} = 0$ (зелёная сплошная кривая). Чёрная сплошная кривая показывает масштабированную производную прошедшей мощности по полю. $\nu = 42.2$ ГГц, T = 4.2 К.

Рис. 4.5: Верхняя панель: полевая зависимость P_{tr} . Средняя панель: $P_{tr}^{\sim}(H)$, измеренная при $E^{\sim} = 125$ кВ/м и $E_{\perp} = +500$ кВ/м, $E_{\perp} = -500$ кВ/м (красная и чёрная кривые соответственно). Нижняя панель: полевая зависимость полуразности $P_{tr}^{\sim}(H)$. Синяя сплошная кривая показывает масштабированную производную прошедшей мощности по полю. Для масштабирования использовались два разных коэффициента: один для H < 1.1 Тл и другой для больших полей. $\nu = 38.6$ ГГц, T = 4.2 К.

Обсуждение результатов

Полученное при обработке экспериментальных данных (представленных на рис. 4.2–4.5) значение электрической поляризации в CuCrO₂ для домена "А" составляет $p = 110\pm15$ мкКл/м², что совпадает со значением, полученным из экспериментов по измерению пиротока $p \approx 120$ мкКл/м² [12, 13]. Сдвиг линии поглощения от доменов "В" и "С" связан не только с изменением энергетической щели, но и с поворотом спиновой плоскости в электрическом поле. Спектры $\nu(H, E)$ для этих доменов получены численно. Величина поляризации, полученная из $P_{tr}^{*}(H)$, соответствующей линиям поглощения от доменов "В" и "С" составляет $p = 65 \pm 15$ мкКл/м²; такое заниженное значение поляризации вероятнее всего связано с гистерезисным поведением спиновой плоскости при колебаниях в переменном электрическом поле E^{\sim} . В предположении, что спиновая плоскость полностью запинингована (то есть, без учёта поворота спиновой плоскости в E^{\sim}), величина поляризации получается p = 160 мкКл/м². Наблюдаемая в экспериментах по пиротоку величина поляризации ($p \approx 120$ мкКл/м²) находится между значениями, получаемыми в рамках моделей полностью запинингованной и незапинингованной плоскостей.

Заключение

Изучено влияние внешнего электрического поля на частоты антиферромагнитного резонанса в разных магнитных доменах образцов CuCrO₂. Получено качественное согласие наблюдаемых сдвигов с ожидаемыми в рамках теоретической модели [5]. Сдвиги резонансных кривых при ориентации полей $\mathbf{H} \perp \mathbf{n}$ и $\mathbf{E} \parallel \mathbf{n}$ находятся в количественном согласии с модельными. Таким образом, показано, что низкочастотная спиновая динамика в CuCrO₂ определяется совместными колебаниями спиновой плоскости и электрической поляризации.

Благодарности

Автор благодарит Свистова Л. Е. за чуткое руководство и всех сотрудников группы спиновой динамики за поддержку и обучение технике эксперимента.

Литература

- M. Poienar, F. Damay, C. Martin, V. Hardy, A. Maignan, and G. Andre. *Phys. Rev. B*, 79:014412, 2009.
- K. Kimura, T. Otani, H. Nakamura, Y. Wakabayashi, and T. Kimura. J. Phys. Soc. Jpn., 78:113710, 2009.
- 3. A. I. Smirnov and I. N. Khlyustikov. Sov. Phys. JETP, 78:558, 1994.
- A. Maisuradze, A. Shengelaya, H. Berger, D. M. Djokic, and H. Keller. *Phys. Rev. Lett.*, 108:247211, 2012.
- 5. V. I. Marchenko. JETP, 119:1084, 2014.
- M. Frontzek, G. Ehlers, A. Podlesnyak, H. Cao, M. Matsuda, O. Zaharko, N. Aliouane, S. Barilo, and S. V. Shiryaev. J. Phys.: Condens. Matter, 24:016004, 2012.
- 7. O. Aktas, G. Quirion, T. Otani, and T. Kimura. Phys. Rev. B, 88:224104, 2013.
- 8. M. Soda, K. Kimura, T. Kimura, and Hirota K. Phys. Rev. B, 81:100406(R), 2010.
- 9. A. M. Vasiliev, L. A. Prozorova, L. E. Svistov, V. Tsurkan, V. Dziom, A. Shuvaev, Anna Pimenov, and A. Pimenov. *Phys. Rev. B*, 88:144403, 2013.
- Yu. A. Sakhratov, L. E. Svistov, P. L. Kuhns, H. D. Zhou, and A. P. Reyes. *JETP*, 119:880, 2014.
- 11. M. Poienar, F. Damay, C. Martin, J. Robert, and S. Petit. Phys. Rev. B, 81:104411, 2010.
- 12. K. Kimura, H. Nakamura, S. Kimura, M. Hagiwara, and T. Kimura. *Phys. Rev. Lett.*, 103:107201, 2009.
- 13. K. Kimura, H. Nakamura, K. Ohgushi, and T. Kimura. Phys. Rev. B, 78:140401(R), 2008.
- E. Mun, M. Frontzek, A. Podlesnyak, G. Ehlers, S. Barilo, S. V. Shiryaev, and Vivien S. Zapf. Phys. Rev. B, 89:054411, 2014.
- 15. A. F. Andreev and V. I. Marchenko. Sov. Phys. Usp., 130:39, 1980.