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The layered structure of the intermediate state of a superconducting plate is investigated in a strongly
inclined field close to critical. It is shown that in this case the ns boundary has an anomalous shape
determined by the surface tension. The transition from the intermediate to the normal state at an

arbitrary angle of inclination of the field is also considered.

PACS numbers: 74.40.Er

The determination of the shape of the boundary be-
tween the superconducting and normal regions is the
basic problem in the theory of the structure of the in-
termediate state of a superconductor. It can be usual-
ly assumed that the field at the zs boundary is equal to
the critical value H,. This makes it possible to find
the shape of the boundary and the period of the layered
structure in a-plate situated in a perpendicular field. [
The results are easily generalized to include the case
of an obligue field. #2! But if the external field is close
to critical and is strongly inclined to the surface of the
plate, the situation changes. To find the shape of the
boundary it'is then necessary to take into account the
surface tension. 4!

It is known that the following thermodynamic condi-
tion must be satisfied on the ns boundary:

H'=H/}+8na/R. (1)

Here H is the magnetic field, o is the surface-tension
coefficient, and R is the radius of curvature of the
boundary, which is assumed to be positive if it is di-
rected into the interior of the » phase, We introduce

a Cartesian coordinate system xyz, The z axisis di-
rected along the layers and parallel to the surface of
the plate, while the x axis is perpendicular to this sur-
face and the z component of the field is constant both
inside the » regions and in the vacuum, and equal to
the external-field component H, parallel to the plate
(see'®3Y), The shape of the boundaryand the field strength
in the xy plane are connected by the condition (1), which
we rewrite in the form:

HMH=H>—H+HZAIR, (1a)

where a =8na/HZ is the “thickness” of the ns boundary.
Although in the macroscopic problem we always have
R> A, in a strongly inclined field close to H,, both
terms in the right-hand side of (1a) can be of the same
order,

The period a of the structure and the concentration of
the phases are determined from the conditions that the
thermodynamic potential of the plate be a minimum
(seell=51y,
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Here H, and M, are the perpendicular (to the plate) com-
ponents of the external field and of the magnetic mo-
ment of the current flowing over the s-phase boundary;
V, is the volume of the s phase; .S, and S,, is the area
of the ns boundaries and of the boundaries of the s

phase with the vacuum; o is the coefficient of the sur-
face tension of the vs boundary.

In the Ginzburg-Landau phenomenological theory of
superconductivity™! it is shown that ¢ is negative (see’®’,
formulas (48)~(53)) and is connected with the depth &
of penetration of the magnetic field by the relation

oe=—H /8

in'the approximation 6/A« 1, In strongly inclined mag-
netic fields, the energy oS, cannot be neglected. The
results of Dzyaloshinskii’>! and Sharvin'®! indicate that
in our case the period will be of the order of the thick-
ness of the plate Zand larger. When a~ L then also
R~L, and if (H% - H2) L~ H?A, then it is impossible to
determine the distribution of the magnetic field and the
shape of the ns boundaries in analytic form; we there-
fore turn directly to the limiting case a> L in a strong-
ly inclined field: |HZ2-HZ|L<H3A,

The main contribution to the value of the magnetic
moment M, at a>> L is made by the current flowing over
the surface of the plate. The current is connected with
the magnetic field at the surface by the relation J,
=cH,/41"1 (c is the speed of light). To calculate the
field we can put in general L =0. The magnetic com-
plex potential ¥ = ¢ + A then maps conformally the strip
on the x+4y plane between the straight lines y=0 and
y=a/2, witha cut along the y axis from y=0 to y=c,a/2
(c, is the s-phase concentration), into a strip in the ¥
plane between the straight lines A=0 and A = H,a/2; this

1potential is defined by the formula

P m 1 ,
=(cos Z-c, Z (e +iy).
ch Ha (cos 3 c) ch 2 (z+iy)

Differentiating this expression with respect to y at
x¥=0and A=0, we obtain the sought field H,=23¢/8y
on the s-phase boundary:
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FIG. 1. Plot of the function
Bley; maxp=21/2at c,=1.
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H,= Lsiniy[(cosiy) —-(60510.)] . (3)
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We can now determine the magnetic moment per unit
volume of the plate, by using the known formula (see®’,
formula 29, 17), which takes in our case the form

2 1 c.af2
M.o=—4—— | yldy.
La 2c v

The factor 4 takes into account both sides of the plate
and the current flowing on the edges of the plate. Inte-
grating we have after expressing J, in terms of H,(3)

a

n
M.=H, St In cos (TC.).

Using this value of the moment, we obtain for the densi-
ty of the thermodynamic potential the expression

H* a n H}
~ G Tlncos (—2—0.)——5;0,-&-
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where we have introduced the notation HZ= g% g2
+2H28/L. The length of the ns boundary, as we shall
show, can be assumed equal to L, From the condition
that (4) be a minimum, we obtain the period

H AL L
—n ey O 5
e=r H, [ In cos (e /2) ] ’ (5)

and the equation for the normal-phase concentration c,
=1l-c,is

\'/: HJ_H‘ ( A )'/:
T .

tg-;Lcn (—lnsin(%—c,.), =p=un* Hr (6)

The dependence of g on ¢, is shown in Fig, 1,

Let us see first what happens at g «1, when the field
H, is weak enough. The concentration of the » phase is
small in this case, and, expanding Eqs. (5) and (6) in its
terms, we obtain

s
c,.(ln 2 ) =-2—ﬁ,
n

TCr

H, AL . \'%
=gt

“=TH, (ln(2/nc,.)) ’ O

from which we have with logarithmic accuracy the con-

centration
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When determining the magnetic field (3) we have put
L =0, This can be done if the widths g, and a, of the
normal and superconducting regions are much larger
than L. At p<«1 we have a,~a>a,, so that it is neces-
sary to have a,> L, as is the case when H2A > H2L,

We determine next the deviation f of the shape of the
ns boundary from linear, To this end we solve Eq. (1a).
We replace the curvature R in it by its value R
=d2f/dx® at small f (seet");

@ _ B —H:+H}
drt AR : (8)

To find the field we can assume the boundary to be
plane, and then the problem reduces to a conformal
mapping of the exterior of a semi-infinite band onto a
half-plane. We write down the solution in parametric
form:

Ho+il=HJ (1—0%)*,
zt+iy=Ln'[0(1—e?) *+arcsin ©]. (©)

The point x=0, y=0 was chosen on the »#s boundary in
the center of the plate,

We determine the value of H; by comparing the ob-
tained expression for the field (9) far from the ns
boundary with the expression (4) near the point y=c,a/2;
we obtain simply Hy=2"1/2H,, Substituting finally the
value for thefield (9)inEq. (8) and integrating the resul-
tant second-order differential equation, we determine
the shape of the boundary:

L Y DS WL L on .
f= ZHA (m 3 )+AL 2, = - [o(1— o¥)"+ arcsin 0].
(10)

Figure 2 shows the change of the boundary in the case
of an oblique field.

We note that in our solution the field becomes infinite
where the ns boundary emerges to the surface., But
since the field becomes larger than H, at a microscopic
distance on the order of A, the singularity does not in-
fluence the solution of the macroscopic problem, inas-
much as the corresponding contribution to the energy
can be neglected.
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FIG. 2. Change of shape of the boundary in an obligue field:

a) ordinary structure at (H E—H HL>H f:A; b) anomalous struc-
ture at H2A>(H2-HLL > H%5; c) anomalous structure at

H,— H1+28/L), f=6x%/AL.




FIG. 3. a) Half-period of
layered structure on the plane
z2=x+iy; b) corresponding re-
gions on the plane of the field
H=H,—iH,; c) the same on the
field of the magnetic poten-~
tial y=@ +iA.
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We determine now the period and the concentration at
B—21/2, In this case the s-phase concentration is
small, and expanding (5) and (6) in its terms we obtain

ama(1-2)",

mn H,-
3 ¢\t (11)
e=a () (meom)

Hye=(HMH.) (L/2rA) ",

If H,>H$, then the production of s layers is not profit-
able, since the gain in the volume energy is suppressed
by the energy required to produce the ns boundary; this
circumstance is pointed out in de Gennes’ book. 7 The
same book contains an estimate of the field at which a
layered structure goes over from the intermediate to the
normal state in a perpendicular field. We calculate
here the exact value of this field at (H%~ HZ) L> H2A.
For this purpose we must, in contrast to Landau!! con-
sider the case a> L. It turns out that a solution of the
problem can be obtained without any assumptions con-
cerning the relations between the quantities @, a,, and L.

We use again the conformal-mapping method. In an
oblique field that is not too strong it is possible, as
usual, to neglect the surface tension when the shape of
the boundary is determined. Figure 3 shows the half-
period of the layered structure on the plane z=x+iy (a)

and the corresponding regions on the plane of the field
H=H, - iH, (b)and on the plane of the magnetic potential
=@ +iA (¢). The points 6 and 8 correspond-to infinity
on the z plane, where the field is equal to H,., The ra-
dius of the semicircle (b)is (H2- H3)'2, By mapping
the region-b into the strip ¢, we obtain the function %(H)
in parametric form: -

H,a
k 3
2n nm+mu

® ~— W h
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b= (12)

where %, is the value of % at the point 7 and w, is the
value of w at the point 6. The shape of the boundary is
determined from the relation H=dy/dz, whence dz

= H"'dy, We shall not dwell on the rather cumbersome
calculations and write out only the value of the period
in the case when a> L.

a=na"L"/4(H,"—~H )", 13)
H, o=(H:—H2)"—2"H (A/aL)". (

We indicate also that the s-layer thickness tends to
zero on the surface and to the value 23/ 27-1/3(ALY/2H, /
(H% - HZY'/? in the center of the plate as H, ~H¢.
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