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1. INTRODUCTION

Owing to developed quantum fluctuations, the para-
magnetic state of a spin system can be observed at tem-
peratures much lower than the characteristic parame-
ters of the spin–spin interaction down to absolute zero.
When the exchange effects are much larger than the rel-
ativistic effects, excitations in such (singlet) ground
state have a certain spin 

 

S

 

. In the exchange approxima-
tion, excitations with the certain spin are degenerate in
the spin projection and, as a rule, have a finite energy
for any quasimomentum. The external magnetic field
leads to the Zeeman splitting of the excitation spectrum
(for 

 

S

 

 

 

≠

 

 0). When the magnetic field reaches the critical
value, the energy of a single excitation vanishes at a
certain quasimomentum. In higher fields, the singlet
state becomes unstable and a certain spin-ordered state
appears in dependence of the type of this softening
mode.

The theory of triplet excitations in the singlet
ground state of one-dimensional systems was devel-
oped by Affleck [1] on the basis of analysis of the semi-
classical limit of the microscopic model (see also [2,
3]). For the cases, where the singlet ground state is
close to instability at zero temperature, the macroscopic
description of the low-frequency spin dynamics of
paramagnets is possible without any model representa-
tions. In this work, such theory is developed for singlet,
triplet, and quintuple excitations in paramagnets, where
the relativistic effects are much smaller than the
exchange effects. We use the Landau theory of the sec-
ond-order phase transitions [4] and exchange symmetry
representations [5]. The results correspond to the gen-
eral properties of the singlet ground state of the spin
system [6]. It is worth noting that the singlet state exists
not only in paramagnets, but also in scalar magnetics
[7]. The theory is directly applicable to such spin struc-
tures.

2. EXCHANGE APPROXIMATION

Excitations with 

 

S

 

 = 0, 1, 2, etc. correspond to the
oscillations of the spin scalars 

 

η

 

(

 

i

 

)

 

, spin vectors 

 

h

 

(

 

i

 

)

 

,

symmetric second-rank spin tensors  with zero
trace, etc., respectively, which are transformed accord-
ing to the irreducible representations of the crystal
group 

 

G

 

 (the superscript 

 

i

 

 specifies the fields belonging
to a given 

 

n

 

 dimensional representation). It is worth
noting that there is a difficulty in the development of the
macroscopic theory for the pseudovector representation
of the group 

 

G

 

 for 

 

S

 

 = 1 (when the vector 

 

h

 

 is trans-
formed as the magnetization 

 

M

 

, see the last section).
This case is not considered in this work.

The spin-dynamics equations are derived using the
variational principle. Let us consider the derivation of
the spin-dynamics equations for 

 

S

 

 = 0, 1, and 2 and only
one-dimensional representations of the group 

 

G

 

.
The excitations for 

 

S

 

 = 0 correspond to oscillations
of the spin scalar 

 

η

 

. It can be both nonmagnetic (its sign
does not change under time reversal) and magnetic
(changes sign) quantities. The former case corresponds
to the spin-isotropic, 

 

G

 

-noninvariant part of the spin–
spin correlation function 

 

η

 

 

 

∝
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,
where 

 

S

 

α

 

(

 

t

 

, 

 

r

 

) is the spin density operator. Averaging
over high frequencies of spin motion is implied in the
correlation function, so that a slow function of time
remains. The latter case corresponds to the spin-isotro-
pic part of the three-point correlation function 

 

η
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.
The Lagrangian of the scalar field has the form

(1)

The exchange constant 

 

A

 

 is positive (

 

η

 

 = 0 corresponds
to the ground state) and is assumed small. This small-
ness ensures the possibility of developing the macro-
scopic theory of low-frequency spin dynamics. The
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exchange tensor 

 

G

 

ij

 

 determining the inhomogeneity
energy has a natural order of magnitude and satisfies
the stability condition for the homogeneous state (spec-
ifies a positively definite form). The tensor 

 

G

 

ij

 

 has the
symmetry of the paramagnetic crystal class. To shorten
expressions, the positive exchange constant 

 

I

 

 deter-
mining the kinetic energy is set to one in all below for-
mulas.

Lagrangian (1) corresponds to the spin dynamics
equations

(2)

from which the magnon spectrum is obtained in the
form

(3)

where 

 

ω

 

0

 

 =  is a small gap and 

 

s

 

 is the magnon
velocity depending on the excitation propagation direc-
tion (

 

s

 

2

 

 = 

 

G

 

ij

 

q

 

i

 

q

 

j

 

/

 

q

 

2

 

).
The gap in the magnon spectrum must change under

pressure and can decrease to zero as the pressure
increases to 

 

P

 

 = 

 

P

 

c

 

. Under the assumption that 

 

A

 

 =

 

a

 

(

 

P

 

c

 

 – 

 

P

 

), where 

 

a

 

 > 0 is a constant, near the critical
point, the gap in the magnon spectrum is expressed as

(4)

For 

 

P

 

 > 

 

P

 

c

 

, the paramagnetic state becomes unstable
with respect to the order parameter 

 

η

 

 = 

 

η

 

0

 

 

 

≠

 

 0.
When the field 

 

η

 

 is associated with the pair correla-
tion function, a peculiar structure transition occurs and
crystal-group elements responsible for change in the

η̇̇ Aη Gij∂i∂ jη–+ 0,=

ω q( ) ω0
2 s2q2+ ,=

A

ω0 a Pc P–( ), P Pc.<=

sign of the field η are lost (remember that only one-
dimensional representations are considered). As a rule,
the transition must be accompanied by change in the
coordinates of nuclei corresponding to lowering of
symmetry. However, the symmetry breaking can be
manifested only in the electronic subsystem if no quan-
tity that is transformed according to a representation of
the group G corresponding to the field η can be com-
posed from the displacements of the nuclei. When the
field η is associated with the triple correlation function,
the transition leads to the scalar-magnetic state [7].

Taking into account the fourth-order exchange
invariant Bη4/4 in the potential energy (under the
assumption that B > 0), near the critical point for P > Pc,
we obtain

(5)

After the transition, the magnon spectrum holds
form (3), but the gap is given by the expression

(6)

It is worth noting that the above description of low-fre-
quency dynamics is applicable not only to spin excita-
tions but also to any Bose degrees of freedom close to
instability in condensed matter. The specificity of the
spin dynamics is manifested for nonzero excitation
spins, particularly in an external magnetic field.

The excitations for S = 1 are described by the vector
h in the spin space. It can be either a magnetic quantity
whose sign changes under time reversal (in this case, the
vector h is related to the spin density as ηα ∝ 〈Sα(t, r)〉)
or a spin vector dual to the spin-antisymmetric part of the
spin–spin correlation function ηα ∝ eαβγ〈Sβ(t, r1)Sγ(t, r2)〉
invariant under time reversal.

The Lagrangian of the vector field has the form

(7)

The corresponding spin dynamics equations

(8)

provide the triply degenerate magnon spectrum of
form (3). Such spectrum corresponds to the data
reported in [8] on inelastic neutron scattering in
TlCuCl3 (see Fig. 1). The small ratio of the excitation-
energy minimum (for q = 0) to the maximum (for q ~
0.3 arb. units) is a main small parameter of the macro-
scopic theory. In (CH3)2CHNH3CuCl3 crystals, a quasi-
one-dimensional exchange spin system with the singlet
ground state is implemented. In this system, the triplet
branch of magnetic excitations with a deep minimum in
the wave vector at the edge of the Brillouin zone is
found (see Fig. 2) [9]. It is worth noting that the macro-
scopic description of low-frequency spin dynamics is
the same for both these cases.

η0
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Fig. 1. Spin-excitation energy vs. the wave vector q = (h, 0,
1) in the TlCuCl3 paramagnetic crystal. The circles are the
inelastic neutron scattering data [8] and the line is spectrum
(3) with the parameters ω0 = 0.16 THz and s = 0.5 km/s.
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The gap near the critical pressure is also given by
Eq. (4). Such a simple law is in agreement with the
experimental results for TlCuCl3 (see Fig. 3) [10]. For
P > Pc, the paramagnetic state becomes unstable with
respect to the appearance of the antiferromagnetic
(or nematic [12]) order parameter h = h0 ≠ 0. The abso-
lute value |h0 | is also determined by Eq. (5), where B is
the coefficient of the fourth-order exchange invariant
(h2)2/4 in the potential energy. After the transition, the
triple degeneration is removed. A usual gapless doubly
degenerate spectrum ω = sq of orientation oscillations
of a collinear antiferromagnet (or a spin nematic with
axial symmetry) appears along with the longitudinal
oscillations of the antiferromagnetic vector given by
Eq. (3) with the gap specified by Eq. (6).

The excitations of the system for S = 2 are described
by the traceless symmetric spin tensor ηαβ. The
Lagrangian has the form

(9)

The corresponding spin dynamics equations

(10)

provide the magnon spectrum of form (3) with quintu-
ple (2S + 1 = 5) degeneration.

When approaching the critical pressure, the gap
goes to zero according to Eq. (4). If the tensor ηαβ is
transformed according to the unit representation of the
group G, the cubic invariant ηαβηβδηδα exists. As a

L
1
2
---η̇αβ

2 A
2
---ηαβ

2–
Gij

2
-------∂iηαβ∂ jηαβ.–=

η̇̇αβ Aηαβ Gij∂i∂ jηαβ–+ 0=

result, the critical point is unattainable under the equi-
librium conditions, because the first-order phase transi-
tion must occur earlier. For the one-dimensional non-
unity representation, the behavior of the system for
P > Pc is somewhat more complicated than that for sca-
lar and vector cases, because the expansion of the
potential energy must include not only the fourth-order
term but also the sixth-order exchange invariant [11]

(11)

If C < 0, the order parameter of the spin nematic
appears [12] with the axial symmetry

where c is the unit vector in the spin space. The absolute
value of the order parameter, η0, is determined by Eq.
(5). In this case, the magnon spectrum contains the gap-
less doubly degenerate mode ω = sq of orientation
oscillations of the vector c and three optical modes
given by Eq. (3) with the gaps

B
4
--- ηαβ

2( )2 C
6
---- ηαβηβδηδα( )2.+

ηαβ
η0

6
------- 3cαcβ δαβ–( ),=
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Fig. 2. Spin-excitation energy E = �ω vs. the wave vector
along spin chains in the (CH3)2CHNH3CuCl3 paramagnetic
crystal. The points are the inelastic neutron scattering data
[9] and the line is spectrum (3) where the wave vector is
measured from the edge of the Brillouin zone with the
parameters ω0 = 0.28 THz and s = 0.41 km/s.
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Fig. 3. Pressure dependence of the magnon-spectrum gap
squared, E2 = a(Pc – P), in the TlCuCl3 paramagnetic crys-
tal according to data from [10] for the parameters Pc =

1.1 kbar and a = 0.35 meV2/kbar.
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If C > 0, the tensor

(12)

appears, where a and b are the mutually orthogonal unit
spin vectors. The absolute value of the order parameter
η0 is determined by Eq. (5). The spin symmetry [13] of

the order parameter given by Eq. (12) is the group .
In this case, the magnon spectrum contains the gapless
doubly degenerate mode ω = sq of orientation oscilla-
tions of the spin structure and two optical modes given
by Eq. (3) with the gaps

(13)

3. EXCHANGE DYNAMICS
IN THE MAGNETIC FIELD

In the presence of the magnetic field lower than the
characteristic exchange field, the Lagrangian of the sca-
lar degree of freedom for S = 0 can be supplemented by
the single exchange invariant H2η2. However, the
appearance of such invariant contradicts the general
requirement of the exchange approximation: the mag-
netization of the spin system M = ∂L/∂H, where H is
the magnetic field, and the mechanical spin moment
S = ∂L/∂ , where  is the spin-space rotation velocity,
are related as M = γS (Larmor theorem), where γ is the
gyromagnetic ratio for the free electron. Thus, the mag-
netic field does not affect the dynamics of the scalar
spin field in the exchange approximation.

The invariants ( [h × H]), h2H2, and (h · H)2 can
appear in the Lagrangian of the vector field h for S = 1
in the presence of the magnetic field. However, accord-
ing to the Larmor theorem, appearing terms, along the
kinetic energy, must be representable as (  + γ[h ×
H])2/2. Correspondingly, the spin dynamics equations
for the vector field have the form

(14)

From this equation, the spectrum of the spin waves
ω(q, H) is obtained in the form

(15)

where the excitation spin projections SH = 0 and SH =
±1 onto the magnetic field direction correspond to the
field oscillations h polarized along H and circularly
polarized in the plane perpendicular to H, respectively.

When the critical magnetic field Hc0 = ω0/γ is
reached, the minimum frequency of frequencies (15)
corresponding to γSH < 0 vanishes and the h = 0 state

ηαβ
η0

2
------- aαaβ bαbβ–( )=

D2
S

ω0
1( ) 2 A P Pc– ,∝=

ω0
2( ) A

B
------ C

2
---- P Pc.–∝=

q̇ q̇

ḣ

ḣ

ḣ̇ 2γ ḣ H×[ ] γ 2 H h H×[ ]×[ ]+ +

+ Ah Gij∂i∂ jh– 0.=

ω ω0
2 s2q2+ γ SHH ,+=

becomes unstable. For this reason, the next term of the
expansion, B(h2)2/4 (it is assumed that B > 0) should be
taken into account in the Lagrangian. For fields H >
Hc0, the homogeneous-state energy minimum

(16)

is reached when the antiferromagnetic order parameter

h = h0 ⊥ H, where  = γ2(H2 – )/B, appears.

The new term in the Lagrangian leads to the appear-
ance of the nonlinear addition Bh2h in spin dynamics
equation (14). Linearizing the equation in the ampli-
tude of small oscillations near the equilibrium position
δh = h – h0, we determine the spectrum of spin waves

in the antiferromagnetic state as ω0 =  for
oscillations δh || H (the magnetic-resonance frequency
ω = γH) and as [1]

(17)

for oscillations δh ⊥ H with elliptic polarizations.

Here, ω⊥ = γ  is the frequency of the
second magnetic resonance. In the approximation
under consideration, the frequency ω– vanishes at q = 0
for H > Hc0 (Goldstone mode, i.e., rotations of the spin
structure about the magnetic field [14]). The observed
splitting of the triplet gap in TiCuCl3 [15, 16] and in
(CH3)2CHNH3CuCl3 [9] is shown in Fig. 4 together
with the obtained theoretical curves.

According to the Larmor theorem, the following
terms appear in the Lagrangian of the tensor field ηαβ
for S = 2 in the presence of the magnetic field:

(18)

For fields H < Hc = /2γ = ω0/2|γ |, the magnon spec-
trum is given by general expression (15), where the pro-
jection SH = –2, –1, 0, 1, or 2.

For fields higher than Hc, axial symmetry about the
field direction is spontaneously broken and the order
parameter given by Eq. (12) with the amplitude η0 =

2γ  appears. The vectors a and b lie in the
plane perpendicular to the magnetic field. The magnon
spectrum in this case has the Goldstone mode for rota-
tions about the magnetic field and four optical modes

with the gaps  = γH,  = 2γH,  = 3γH, and

 = 2γ .
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4. RELATIVISTIC CORRECTIONS

The procedure for including of relativistic correc-
tions will be considered on the example of TlCuCl3 for
which the detailed experimental investigations for the
gap of the softening branch were performed [17] by the
magnetic resonance method near the transition in the
magnetic field.

The exchange symmetry of the field h is determined
by the transformation properties under the permuta-
tions of atoms corresponding to the lattice symmetry
elements [5]. The magnetic cell of the antiferromag-
netic state of TlCuCl3 coincides with the paramagnetic
cell. For this reason, it is sufficient to specify only the
action of the rotation elements of the C2h crystal class.
It follows from the data of the magnetic elastic scatter-
ing of neutrons [18] that C2h = h and σhh = –h. It is
clear that the antiferromagnetic state has no Dzy-
aloshinskii invariants leading to weak ferromagnetism.
In this case, the main quadratic relativistic contribution
to the Lagrangian is reduced to anisotropy (βαβ/2)ηαηβ,
where the tensor βαβ has the symmetry C2h. Since the
state is close to instability even in the absence of the
field, the tensor components βαβ can be comparable
with a small exchange constant A. To shorten the
expressions, let us join the designations of the relativis-
tic and exchange terms by setting βαα = A. Since the
length of the vector h is small, the relativistic effects
can be disregarded in the fourth-order terms.

The tensor βαβ has the crystal symmetry C2h. Let us
direct the z axis along the second-order axis and the x
and y axes along the principal axes of the tensor βαβ so
that the inequality βxx < βyy is satisfied. According to the

experimental data [18], the easy magnetization axis lies
in the (xy) plane at an angle of 13° to the [201] crystal-
lographic direction. In our notation, it is the x axis.

For an arbitrary direction of the magnetic field, the
very lengthy dispersion equations are obtained. We
only present the analytical expressions for the frequen-
cies of homogeneous oscillations for the case, where
the field is directed along one of the proper axes of the
anisotropy tensor, for example, the z axis. For fields
lower than the critical value (for a given direction), the
frequency of oscillations polarized along the field (ηz)

is equal to ω0 = . The frequencies of the elliptically
polarized oscillations of the components ηx and ηy are
determined by the equations

(19)

The frequency ω– vanishes for Hc = /γ. The equi-
librium antiferromagnetic vector components after the

transition are ηx = γ  and ηy = ηz = 0. In
this case, the frequencies of small oscillations near the

equilibrium state are equal to ω0 = 
for the component δηz 

βzz

ω±
2 γ 2H2 βxx βyy+

2
--------------------+=

±
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2
--------------------⎝ ⎠
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2
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2
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Fig. 4. Splitting of the triplet gap in the magnetic field for
(open circles) TlCuCl3 [15, 16] (Hc = 5.9 T) and (closed cir-
cles) (CH3)2CHNH3CuCl3 [9] (Hc = 9.9 T).
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Fig. 5. Behavior of the low-frequency branch of the mag-
netic resonance in TlCuCl3 near the critical magnetic field
H || C2.



756

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 104      No. 5      2007

FARUTIN, MARCHENKO

(20)

for the elliptically polarized components δηx and δηy.
The frequencies ω– given by Eqs. (19) and (20) with the
parameters βxx = 3.3 × 104 GHz2 and βyy = 2.4 ×
104 GHz2 correspond to the experimental data (Fig. 5).

Glazkov et al. [17] also studied the low-frequency
magnetic resonance for two directions of the magnetic
field: first, along the [201] crystallographic axis in the
plane perpendicular to the C2 axis and, second, perpen-

dicular to the plane . The behavior of the fre-
quency for H || [201] is shown in Fig. 6. The agreement
with the theoretical curves is ensured by the third
parameter βzz = 2.3 × 104 GHz2.

The description of the behavior of the frequency for

the field direction H ⊥  appears to be impossible
when the main anisotropy effects are taken into
account. This means that the contribution from next
corrections is anomalously large in this case. However,
since the symmetry of the crystal is low, there are many
such relativistic and exchange-relativistic terms ,

[h × ]αHβ, (H · h)Hαηβ, H2ηαηβ, and h2HαHβ. For fit-
ting, it is sufficient to take into account only one relativ-

istic exchange term ( /2) h2, which does not
affect the spectrum for the field direction H || C2 and
almost does not affect the spectrum for the field direc-

± 3γ 2H2 3βxx βyy–
2

-----------------------–⎝ ⎠
⎛ ⎞

2

⎩
⎨
⎧

---– 2 βyy βxx–( ) γ 2H2 βxx–( )
⎭
⎬
⎫

1/2

102( )

102( )

η̇αη̇β

ḣ

β̃xx Hx
2

tion H || [201]. The theoretical curves in Fig. 7 are plot-

ted for the fourth parameter  = –0.42 (GHz/kOe)2.

5. CONCLUSIONS

The theory developed in this work completely cor-
responds to the general properties of the spin structures
with the singlet ground state at zero temperature [6]:
Zeeman removal of the energy degeneration of spin
multiplets (spin excitations with an arbitrary wavenum-
ber) in the external field and the absence of the mag-
netic susceptibility up to the critical magnetic field
(pressure). The low-frequency spectra of appearing
(above the critical magnetic field) spin structures corre-
spond to the spectra of antiferromagnets, spin nematics,
or tensor magnetics. The macroscopic theory cannot
answer the question of which excitations exist in a
given singlet state and which of them become unstable.

As indicated above, the situation of the instability of
the singlet state with respect to the appearance of the
magnetization is a peculiar case. We could not find the
Lagrangian formulation of the spin dynamics of the
paramagnets that would lead to the Landau–Lifshitz
equation for the low-frequency mode after the transi-
tion point. If a macroscopic spin degree of freedom
with the magnetization symmetry exists in the system,
the susceptibility in the singlet state at zero temperature
must generally be nonzero. There is a precedent of such
singlet state in microscopic theory. It is the one-dimen-
sional Heisenberg model for the case of the antiferro-
magnetic sign of the exchange constant for the chain of
spins S = 1/2. In this model, the magnon spectrum has

β̃xx

20
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H, kOe

Fig. 6. Behavior of the low-frequency branch of the mag-
netic resonance in TlCuCl3 near the critical magnetic field
H || [201].
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Fig. 7. Behavior of the low-frequency branch of the mag-
netic resonance in TlCuCl3 near the critical magnetic field

H ⊥ . The thin curve is plotted by using only the
parameters βxx, βyy, and βzz obtained from a fit for two other
directions of the magnetic field.
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zeros at the point q = 0 and at the edge of the Brillouin
zone, as well as the linear dispersion same at both
points. The nature of such spectrum is not yet under-
stood in the framework of the macroscopic theory,
because the spontaneous breaking of symmetry and,
correspondingly, the Goldstone mode are absent in the
system.
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