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It is shown that two-dimensional first-order phase transitions cannot occur
because of strictional effects at the surface of crystals. Restrictions are obtained on
the symmetry of equilibrium structures at the surface. The possibility, in
principle, of the existence of diverse parquet structures is pointed out.
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We assume that two different phases exist on the surface of a crystal. These can
be both the natural surface structures as well as structures of adsorbed atoms. If the
phases are in thermodynamic equilibrium, then the surface energies of the crystal in
both states are identical for a given face. Since these phases are different, the com-
ponents of the surface-tension tensor need not be identical.

The surface-tension tensor B, (i, v=1, 2) defines' the linear dependence of the
surface energy of the crystal on the components of the strain tensor ug(i, k=1, 2, 3)
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The total deformation energy with allowance for the volume is
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where 0y is the stress tensor. If 8, is a function of the coordinates on the plane sur-
face, then we can obtain the boundary condition by varying Eq. (2) with respect to
the displacement vector
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We shall restrict our discussion to the isotropic case, where 8, =86,,. We assume
that =8, in the first phase and 8=, in the second; therefore, the condition (3) can
be represented in the form
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X,y is the Cartesian coordinate system in the surface plane, with the x axis directed
normal to the boundary between the surface phases.

The solution of the equations of elasticity theory with the boundary conditions
(4) leads to the following result for the energy (2) per unit length of the demarcation
line in some macroscopic region of radius R around this line
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Here E is Young’s modulus, ¢ is the Poisson coefficient, and # is a quantity of the or-
der of the atomic distance. The logarithmic divergence of the energy is attributable

to the fact that the strain tensor decreases as R~*. The fact that the energy is nega-
tive is obvious even without calculations, since the deformation is energetically favor-
able in this situation, and the energy (2) is zero in the absence of a strain.

Thus, the formation of boundaries between the phases results in a large energy
reduction. Both phases, consequently, tend to mix, i.e., they cannot exist as separate
phases. An obvious corollary of this is the impossibility of the occurrence of two-di-
mensional, first-order phase transitions on the surface of crystals.

We call the primary symmetry of the surface structure a symmetry that is caused
by the volume elements of the symmetry. It is clear that the actual symmetry of the
surface can either be identical to the primary symmetry or it can be lower, In view
of the considered striction instability, complete identity of the components of the
surface-tension tensor is necessary in the co-existing phases. For example, assume
that the point group of the primary symmetry is C,; then the point group of the ac-
tual symmetry can only be Cy. Let us assume the actual symmetry is C;. The sur-
face-tension tensor on such a face has two independent components in the principal
axes. The other possible equivalent state differs from the first state by a rotation by
C4. The components of the surface-tension tensor change from point to point and,
therefore, they can experience sudden changes along an arbitrary boundary between
the phases. Consequently, the actual point group must coincide with the primary
one. The situation is the same in the C, C3, and Cyy groups. The symmetry at
such faces can be lower than the primary symmetry because of an increase in transla-
tions. A reduced actual symmetry is possible in the rest of the primary groups:

Cy =C;,Cy;Cap-Cyy, Chy, since the f, tensor is unchanged after a rotation C;,
C3v -C3y,C3; C4v ~C4v, Cy; C5 ~-Cs,C3; Cﬁv -Csy, C6 y C3v., (s, since the surface-
tension tensor in these cases reduces to 8 ;.

It is clear that the obtained restrictions exist at any two-dimensional defects in a
crystal—bicrystalline boundaries or packing defects.

We note that the slight logarithmic divergence of the energy (5) can result in the
following interesting situation. We add to the deformation energy (5) the energy € of
a unit length of the boundary. The sum of the energies can be written in the form
(5) with the renormalized quantity a >a*. If ¢ is appreciably larger than the multi-
plier in front of the logarithm in Eq. (5), then a* >3>4. Thus the subdivision of the
structure ceases at a size of the order of a*. A regular, parquet-type, periodic struc-
ture must be formed under thermodynamic equilibrium conditions. Each “tile” of
this parquet is a phase whose symmetry is forbidden above for a phase of unlimited
dimensions. All “tiles” of different orientations are contained in each unit cell of the
parquet, so that the parquet, as a whole, has one of the allowed symmetries for a
given face.

To avoid a misunderstanding, we must stress that if a* >>a, then a first-order
phase transition (it is easy to prove that this also applies to the one-dimensional

382 JETP Lett, Vol. 33, No. 8, 20 April 1981 V. I. Marchenko 382



case?) can be observed in two-dimensional systems with dimensions smaller than a*,
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