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The temperature correction to the resonance frequency in the antiferromagnetic
material in the spin-wave region has been calculated. The theory is found to be in
quantitative agreement with the experimental data for solid He’.

The problem of finding the temperature corrections to the spin-wave spectrum in
magnetic materials is generally linked with the high-spin approximation. Here the
theory is rather cumbersome even in a very simple ferromagnetic case. The situation is
particularly complicated in antiferromagnets in which the microscopic model cannot
describe the ground state satisfactorily.

In the present experiments we have used a simple approach to determine the
temperature corrections which is essentially similar to the approach developed by
Andreev' in hydrodynamics and which is, in principle, not based upon model repre-
sentations. The set of experimental data necessary for an exact testing (without any
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adjustable parameters) of the theory we were able to find for only one rather exotic
magnetic material—solid antiferromagnetic He* (spin 1/2). For this reason (see Ref.
2), we will use a collinear antiferromagnet of the easy-plane type to carry out the
calculations.

The low-frequency dynamics of such an antiferromagnet (at 7= 0) is given by
the equation’
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where y is the gyromagnetic ratio, y, is the susceptibility in the direction perpendicu-
lar to the antiferromagnetic vector / (/7= 1), and U is the potential energy
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Here @) and a, are the exchange constants of the inhomogeneity energy, and /3 is the
anisotropy constant. To streamline the calculations, we will analyze Eq. (1) in the
dimensionless form
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Let us consider the small oscillations near the state /, =1. At a temperature
T>#(0), for which w(0) =y( £/ y,)"? (but which is low in comparison with a
typical exchange energy), we can represent the amplitude of the motion /,,/, as a sum

AT 3)

where the functions (v,,v, ) =v correspond to the relevant slow motion, and ( u,, i, )
= p correspond to the fast thermal motion. For small values of p and v we have

=y 1-@+ 0P = 1- (4 + VY2, (4)

We write out the x component of Eq. (1')
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and we divide this equation by /,

O VR 7 S
Zz l z ly zZ
¥y

Substituting expressions (3) and (4) into this equation, we expand the resulting equa-
tion over p up to the quadratic terms and linearize it over v. Averaging over the fast
thermal fluctuations ({ ) = 0), we find
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Since all mean values are multiplied by the amplitude of slow motion, these values,
ignoring the nonlinear effects, should be determined in the equilibrium state (v = 0).
We can then set { p, fi,),{ u, 0, ),{Ap ?), and (37 u?) to zero, and Eq. (5) reduces
to

@ = A XU+ WD) + 0, L+ (i, — Ay =0 (6)
The function y, clearly satisfies the equation

izz = Auz B
from which it follows that
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Dividing Eq. (6) by (1 + (2)), we thus find

x')'z=sz—vz(l—2(u:)). (7)

We use the following line of reasoning to determine { 2 ). The energy of motion u, is
1 ‘2 2
S U+ G Y Y aV (8)

In this equation the first term is the kinetic energy (see Ref. 3); the anisotropy is
ignored in the potential energy. We expand p, in a Fourier series in momenta
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On the one hand, the mean energy of the thermal motion will then be
l »
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(oscillator). On the other hand, in the temperature region of interest to us, this energy
obviously is X, €, n,, where €, = k is the energy of a magnon with the momentum Kk,
and n, (¢,/T) is the Planckian magnon-distribution function. We therefore have

1 d*k T?
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Finally, returning to conventional units, we find from (7) and (9) the following
expression for the temperature dependence of the resonance frequency
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w (T) = w(0)(1 - 2T ) (10)
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where ¢, and ¢, are the velocities of the spin waves: ¢; = y(¢;/ y,)'* and ¢,
= y(a,/ y.)"* There is no ~ T ? correction to the spin-wave velocity. In determin-
ing the first nonvanishing correction to the velocity (~7*) (see Ref. 4), it is neces-
sary to take into account in the potential energy the following terms in the gradients.
As can be seen from (4), the temperature dependence (10) (at v = 0 it is clear that
{(u2y = (u2)) is the same as the temperature dependence of the modulfus of the
antiferromagnetism vector (=(/,)) (or of the sublattice magnetization).

In the case of ferromagnets, an averaging of the Landau-Lifshitz equations over
the thermal motion gives the following expression for the resonance frequency in the
uniaxial case:
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consistent with the result of Ref. 5 obtained in a microscopic model for $> 1 [in the
result of Ref. 5, Eq. (31.3.3), there are three misprints}. Here M is the magnetization,
4 is the average characteristic of the magnon spectrum e, =4, k? +4, (k2 +k}),
given by 4 =A4,7-4 /%, and § is the Riemann function.

Osheroff et al.” have shown that at a temperature below 1.03 mK solid He? is an
easy-plane collinear antiferromagnet. In the spin-wave region, they derived an empiri-
cal equation for the temperature dependence of the resonance frequency in a zero field.
We will write this equation in the form

Bey (T) = w(0)(1 — 0.23 T?)

(the temperature is given in mK). Having measured the entropy, Osheroff and Yu®
found the average velocity of the spin waves to be (8.4 + 0.4) cm/s (=¢; c?). Finally,
from the measurements of the magnetic susceptibility carried out by Prewitt and
Goodkind” we find y; '~1.9X 10°. Substituting these data into (10) (y = 2.04x 10*
Hz/Oe¢), we find

W(T) = w(0)[1—(0,20 +0,03)T?].

To the best of our knowledge, this is the first case in which a relationship between the
various physical characteristics of a magnetic material predicted by the spin-wave
theory has been confirmed experimentally.
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