Formation of nucleation centers in a crystal
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A theory is derived for the critical nucleation center in the course of a first-
order phase transition in a solid. The critical nucleation center turns

out to be very oblate, because this shape lowers the elastic energy of the
deformations which arise because of the difference between the densities of the
two phases. The energy of formation of such this nucleation center is

derived on the basis of an analogy with the crack problem. The possibility of
a transition from nonspherical to spherical nucleation centers as the
supersaturation increases is discussed.

The rate at which the new phase is nucleated in the course of a first-order phase
transition is determined by the equilibrium distribution function of the nucleation
centers and by their growth kinetics (Ref. 1, for example). Putting aside anisotropy
effects, we conclude that since there are equilibrium vacancies and interstitial atoms in
the interior of a crystal, the stage of nucleation in the immediate vicinity of the
transition should not differ in any way from (for example) the process by which liquid
droplets are nucleated in supersaturated vapor. Kinetic reasons, however, may make a
different nucleation path more effective as we get away from the transition point.

We ignore the equilibrium defects in the crystal. A deformation must then arise
around the nucleation center of the new phase, because of the difference between the
densities of the two phases. As Lifshits and Guild? have pointed out, this deformation
changes the picture of the nucleation process substantially. Motorin® has shown, how-
ever, that the assertion in Ref. 2 that there is an equilibrium striction-related hysteresis
is incorrect. The nucleation center discussed in Ref. 2 was spherical, while an oblate
shape is more favorable.

In this letter we offer a solution to the problem of the critical nucleation center in
an isotropic crystal. This solution can be found thanks to the use of the exact results
found by Griffith* and Sneddon® in the theory of cracks.

The change in free energy upon the formation of a nucleation center of the new
phase is

AF= ffstw+FL+fadS—fdeo- _ (D

Here f,and f are the free energy densities of the deformed and undeformed (initial)
crystal, respectively. They satisfy
1
fx_fs(J:Eo'ikuik’ (2)
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where oy, and u;;, are the stress and strain tensors (for simplicity we are assuming that
the phase transition occurs at a zero external pressure), and dV g is the volume
element in the integration over the volume of the undeformed state of the crystal (not
including the volume of the nucleation center). In this integral, the integration runs
over the entire volume of the initial state. The quantity « is the surface energy of the
interface, and F; is the bulk free energy of the nucleation center of the new phase,
given by

For definiteness, we will speak in terms of a melting for the time being; i.e., the new
phase, which contains NV particles and occupies a volume ¥, is a homogeneous melt
with a chemical potential ¢« and a pressure P.

We write the energy in (1) in the form

AF= f (fo— fro)dVig+ (= Po— f o) N—P(V —u,N) + f ads, (4)

where v; is the atomic volume of the crystal at zero pressure. Substituting (2) in here,
and integrating by parts (for the equilibrium strain field), we reduce the first term in
(4) to the following integral over the boundary of the nucleation center:

J (fs—f0)dW o= —% f a,-,,u,a’S=%Pf u,ds. (5)

The latter inequality is correct if we ignore surface-tension effects® in the mechanical-
equilibrium boundary conditions. Since the medium is continuous, we have the fol-
lowing expression for the volume of the melt:

V=~Nuv;(P)=Nv+ f u,ds, _ 6)

where v;(P) is the atomic volume of the liquid at pressure P, and the last term
describes the change in the volume of the crystal upon deformation. Finally, using (5)
and (6), we put expression (4) in the form

1
AF = (u— Po,— fmvs)N—zPJ- u,dS+ JadS. Q)

We consider a nucleation center which is a very oblate circular lune of radius R
and height #<R. In a first approximation, we will then ignore the height of the lune in
solving the elastic-theory problem. In this case the pressure P exerted on the crystal by
the liquid is given on a plane circular cut within the radius R. This problem is
completely equivalent to the crack problem.*’ We need only the normal component of
the displacement vector, u,=u,, at the interface [see (7)]:

u,=4P(1—0%) (R*—r)V*/7E (8)
(Ref. 5). Here o is the Poisson ratio, and E the Young’s modulus.
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The divergence of the stress near the edge of a crack has been discussed at length
in the literature. However, the stress becomes significant only at atomic distances, as
in the case of dislocations and point defects.

To calculate the pressure P we use the Gibbs-Thomson phase-equilibrium con-
dition. In this condition, in the leading approximation in the small deviation from the
phase-transition point, we can ignore capillary and striction-related corrections:

p(P)=(P+f0)vs (9)
Expanding the chemical potential u in P, we find

P=Ap/(v;.—v,), (10)
where v, is the atomic volume of the liquid at zero pressure, and the quantity

Au=vfo—(0) (11)

specifies the deviation from the phase-transition point.

Using (7)-(9), we find the energy of formation of the nucleation center to be

1
AF=—3P f u,dS + f adS= —8P(1— ) R*/3E+27R . (12)

This expression is precisely the same as the expression for the energy of a crack. The
radius of the critical nucleation center, which corresponds to the extremum of energy
(12), is

R.=7Ea/2(1—0*)P, (13)
and the energy of the nucleation center is [we are using (10)]
AF =1 a*E* (v, —v,)*/6(1—0?)2(Ap)*. (15)

From (6), (8), (10), and (13) we find the total number of particles in the critical
nucleation center to be

N, =2mE* (v, —v,)*/3(1—-0?) 2 (Ap)>. (15)
The lune height / can be found from
bhR*>=uN, - (16)

where the numerical factor b depends on the shape of the nucleation center. From
(11), (13), (15), and (16) we find the relation

ho/R.~(1—c*)vAu/E(v;—uv,)> (17)

In our approximation the energy of the nucleation center does not depend on the
detailed shape. It is not difficult to verify that in the leading approximation the nu-
cleation center is a figure bounded by two small spherical segments. The primary
shape-dependent correction in Gibbs-Thomas condition (9) arises from a capillary
effect (aKv,, where K is the curvature of the surface); the shape dependence of the
deformation correction can be ignored. As a result, the curvature K turns out to be a
constant. '
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A critical nucleation center thus exists for an arbitrarily small Ay, so there is no
hysteresis. However, the striction effect, due to the difference between the atomic
volumes of the phases, leads to a substantial increase in the energy of formation of the
nucleus: AF,« (A) ~* instead of the customary AF,« (Au) ™2 It can be seen from
(17) that at small angles of Au the height of the lune is much smaller than its radius
and that the nucleation center becomes more rounded as Ay increases. According to
Ref. 2, for Au greater than a critical Ay, given by

Apo= (v —v)*E(1428)/3v(14+0) (1+B)?,

B=2E/3(1+0)k, (18)

where k is the bulk modulus of the liquid, a solution corresponding to a spherical
nucleation center exists [with Ay~ Ap,, we find A/R,~1 from (17)]. In the region
Ap, < Ap < Ap, however, this solution is unstable with respect to a shape perturbation
of the type

R=R,+8Y(0), (19)

where Y is the second spherical harmonic. A simple but lengthy calculation yields the
following expression for Aug

A,us=f(o,ﬁ)A,uc s

where the function f>1 is extremely complicated. A transition from nonspherical to
spherical critical nucleation center can thus occur at Ay > Ap. Since a term cubic in
8 in the energy is not prohibited by symmetry for the case of perturbation (19), this
transition is not continuous. At the point of the transition, the energies of the critical
nucleation centers (spherical and nonspherical) are equal. However, even if the crit-
ical nucleation center is spherical, it loses its stability with respect to a perturbation of
the type in (19) once it reaches a size R, i.e., the size of a spherical critical nucleation
center under the condition Au=Ap:

R,=2a/(Au,—Au.). (20)

-

The evolution of this instability and the shape of the growing nucleation center are
problems which cannot be solved in a thermodynamic treatment; they require solution
of the kinetic problem.

In the 2D case this transition from noncircular to circular critical nucleation
centers may be continuous, since in the case of a perturbation of the radius at the
harmonic 8 cos 26, which loses stability, the symmetry forbids a term in the energy
cubic in & (the states 5§ and —4§ differ by a rotation through #/2). Otherwise, the
results in the 2D case are analogous to the 3D results. In particular, here are the
parameters of the critical nucleation center for small values of Ay (cf. Ref. 4):

u,=2P(1—0*)(R*—r)*/E, (8a)
R, =2Ea/m(1—ad*)P, (13a)
AF,=40E(v;—v,)*/m(1—0%) (Ap)?. © (14a)
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In the course of a solid-phase transition, in which the nucleation center of the new
phase is also a crystal, the condition that the pressure be constant within the nucle-
ation center is not mandatory. However, the solution found above is an extremum
again in this case. We might add that for transitions involving a small volume defect
(e.g., for magnetic transitions and for transitions which are approximately second-
order transitions) a situation may arise in which it is difficult for crystal defects
(vacancies, interstitial atoms, and dislocations) to form at the interface. Since the
interface is coherent in this case, there is the additional condition that the displace-
ment vector must be continuous at this interface [see condition (IL,6) in Ref. 7].
Under this restriction, nucleation is possible only if a critical supersaturation Ay, is
exceeded, and the nucleation center is spherical.’
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