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Abstract

Theoretical explanation of the transition from a straight step to a wavy step that was observed on Si(00 1) is pre-
sented. The origin of this transition is the instability developed due to a negative logarithmic divergence of the wavy step
elastic self-interaction. Above the critical temperature the straight step is stabilized by the interaction between different
steps. The instability results in a second order phase transition with a finite critical wavelength. The predicted mean
square fluctuation near the transition point deviates from the wavelength square law predicted by the edge-stiffness
theory, and consists of the critical growth of the unstable soft mode, yielding a peaked power spectrum. © 2001

Elsevier Science B.V. All rights reserved.
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Vicinal single crystal surfaces

Undulation of steps on Si(00 1) [1-3] has often
been cited as an example of two-dimensional pat-
tern formation arising from surface stress aniso-
tropy. For this surface, a bulk screw axis C47 in the
space group generates two possible (00 1) surface
structures (even without surface reconstruction).
These structures, referred to as (1 x 2) and (2 x 1),
are separated by monoatomic step. Two types of
steps structures are possible, referred to as “A”
and “B”, depending upon the orientation of the
structure on the upper terrace. In heavily boron-
doped Si, unusual morphology was observed con-
sisting of alternating wavy B-step and a straight
A-step, the nearest B-step being out of phase [2,3]
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as demonstrated schematically in Fig. 1. Using
low-energy electron microscopy (LEEM), Hannon
et al. [3] investigated the transition from a straight
to a wavy B-step that occurs at roughly 960°C.
Specifically, they measured the fluctuations of the
A- and B-type steps. The inspection of the images
shown in Refs. [2,3] reveals most intriguing phe-
nomena, namely, the transition occurs at a finite
wavelength. From these micrographs, we esti-
mated the critical wavelength to be roughly 0.5
pm.

The origin of the transition from straight to
undulated step configuration has been a subject to
an ongoing debate. Hannon et al. [3] attributed the
undulation to the reduction of the single A-step
free energy. According to this theory, the steps
curve to include A-type-step segments. In an at-
tempt to show this effect, they considered the
temperature dependence of the step free energy by
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Fig. 1. Schematic presentation of the observed wavy step
structure in doped Si(00 1). SA and SB represent the “A-step”
and “B-step” correspondingly.

studying the step stiffness that was extracted from
their fluctuation measurements. This was done by
the application of the capillary theory by Bartelt
and Tromp [4] that ignored elastic interaction be-
tween steps and predicted that the step mean
square fluctuation decreases as the square of its
wave number. This relation was approximately
confirmed for the A-step, which is stable at the
transition temperature against wavy fluctuations.
In contrast to this theory, Pelz et al. [1,5] pointed
out that the elastic interaction between steps (that
explains the low-temperature ordering of the step
pattern) reduces the total A-step energy. In reply,
Hannon et al. [6] argued that the discrepancy is not
evident at high temperature, before the pattern is
fully developed.

Being the core of the debate and the essence of
the present work, the steps elastic interaction on
Si(001) calls for a particular presentation. This
interaction belongs to the general problem of line
defect interaction via negative logarithmic diver-
gence. This divergence was predicted for the case
of interacting boundaries between two dimen-
sional phases on crystal and liquid surfaces as well
as the interaction between domain boundaries in
2D ferromagnets [7-9]. Similarly, Ref. [10] con-
sidered the equilibrium structure of striped domain
via logarithmic divergence, with isotropic edge
energy. Experimental evidence for such interaction
was found in the measurements of the ratio be-
tween the widths of straight terrace strips of
(1 x2) and (2 x 1) phases as a function of the
external strain on Si(001) [11]. Similar phenome-
non was found in the measurements of the varia-
tion of the width of oxygen monolayer strips with
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the adsorbed oxygen coverage on a copper surface
[12]. Both experiments were interpreted in Refs.
[13,14]. The thermodynamic of the striped domain
case is different than the vicinal surface case since
the domain width is not constrained by external
force. The interaction between two wavy steps was
studied in Ref. [15]. ' The energy of a periodic
array of wavy steps on Si(001) was examined
numerically in Refs. [16,17]. In Ref. [17] Ebner
et al., considered particularly the stability of step-
train in-phase. (We shall show that this structure is
not the first to become unstable.) None of these
works attempted to study the transition from a
straight step to a wavy step, as observed for the
doped Si. The study of the influence of step—step
interaction on the single step auto-correlation
function involved various approximations and was
recently reviewed in Ref. [18]. These models do not
account for the detailed elastic interaction between
all the steps or for the elastic self-interaction. A
unique attempt to calculate the step shape spec-
trum in a step-train structure was concluded with
the remark that the problem is relatively difficult
[13].

In order to examine the role of the elastic in-
teraction in the step fluctuation and in the undu-
lation transition, the present letter analyzes both
contributions of the step formation and the elastic
interactions to the total system energy and to the
step fluctuations. It is shown that the self-interac-
tion of the wavy step (B-step) destabilizes a soft
mode near the critical point, causing the undula-
tion transition. The elastic interaction between the
unlike steps stabilizes the straight step above the
critical temperature. In contrast to the capillary
theory, the present theory predicts that near the
critical temperature the B-step fluctuations do not
decrease as the inverse square of the wave number,
and exhibit strong amplitude growth close to the
critical point (see Fig. 4 below). We interpret the
observed undulation instability as a second order
phase transition with a finite wavelength at the
transition temperature. The nature of this transi-
tion is similar to the one discussed for the flat-
tening transition of a rough interface [19].

! Compare with 2D ferromagnet case in Refs. [7-9].
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The energy of an ensemble of parallel surface
steps is divided into two contributions:

(a) The energy of steps as the line defect: This
energy is given by [y, 5(¢)dl, where p, 5(¢) is the
energy density per unit length of A-step or B-step
with orientation ¢, and d/ is the step length ele-
ment; and,

(b) The steps clastic interaction, discussed be-
low.

As the point symmetry of the surface is C,,, the
principle axes of the surface stress tensor [20], S’
and %, are parallel to the reflection lines, e.g.
along x and y. Therefore, the two surface struc-
tures are represented by the diagonal surface stress
tensors, i.e.: [fix = ﬁfy = f, and ﬁjy = /ifx =0 A
given step running along x with a shape function
n(x) exerted a net force due to the surface stress,
namely:

d d
lfl = (B, _ﬁz)a"» Il = (B — Bo) qan‘ < 1)

The force components are positive or negative
depending upon whether the step is of type A or B.
The interaction between step elements is

-3 / ded 74 (x — X (W) ()

where y is the elastic Green function of the surface.
Consider an array of alternating infinitely long
parallel A-step and B-step separated by terraces of
width L. The shape of the nth steps (A or B) is
represented by periodic functions #n,(x). After
substituting the force exerted on the step edge (as
above), we express the elastic interaction to lowest
order of #,(x), assuming a periodic step function
(first order term vanishes):

' 1
(_1)”_” A/dxn / dxn’ |:§(1/In - 71,,/)2 (7";”3/ — 3L2
/ 2 -5 ror o —1
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where

2

P2, = (X —x0) + LA (n— 1)

and

(1- ‘72)(/31 - ﬁz)z
4nE '

Here E is the Young modulus and ¢ the Poisson
ratio. The first two terms in the integrand are the
expansion of the interaction due to displacements
and forces normal to the step, and the third term
arises from displacements parallel to the average
step direction.

In the small amplitude limit we Fourier expand
the step shape function, nP(x) =3 B x
elex+21Lay T this notations, the undulation mode
represented in Fig. 1 1is characterized by
(¢y =m/2L, n} =0, n¥=mn,). In the harmonic
approximation the total energy is given by:

1 \ .
E =53 0 g P+ A8 g =+ 2% (ng)
7
+ 2B )} (1)

Here the coefficients are calculated from the above:
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Lq,
X 3 IKI (2Lq,(2n — 1)), (2b)

and represented by elements of a matrix desig-
nated hereafter as the “[/]-matrix”. In Egs. (2a)
and (2b), Lap = aapexp(Jap/4), ax and ag are
the elastic cutoff for the A-step and B-step, j, 5 =
yap + (d*yap/d¢?) is the step stiffness and K, is
the modified Bessel function of order 1. The log-
arithmic term includes the contributions of the line
defect energy and elastic self-interaction. This term
becomes negative when ¢,Lap < 1, revealing the
origin of the undulation instability. However, the



other interaction terms that arise from the elastic
step—step interaction, can stabilize the straight step
morphology.

In the general case (gL ~ 1), instabilities are
identified by negative values of the eigenvalues of
[2]. These are given by:

74— _ (;AA | ;BB
by =4+ A0)]2

+ {(A?A - /153)2 /4 + (A;*B)z}l/z

As i; > /1;, we search for instabilities in /1;. When
q, = m/2L, the eigenvectors associated with the 4/

) A _ B _
eigenvalues (for any g.) are (n; =0, n; =n,),
which implies possible instability of the type
shown in Fig. 1. In order to explore such insta-
bilities, we write the energy as

2

1 _
E=3Y 7 (g,

x>0

)

where 1~ = )»f;B and ¢ = (q.,n/2L). In Fig. 2 we
plot the numerical values of 4 as function of ¢,L
and L/Lg. It is seen that instability occurs when
L =~ 4.1Lg. The critical wave number is indepen-
dent of La; and, from Fig. 2, ¢. ~ 0.63/Lg. More-
over, the numerical investigation of Zq_ in the ¢., g,
plane shows that there is a single minima (with the
above critical values), indicating that the instabil-
ity shown in Fig. 1 is developed before any other
possible instability occurs.

10

L/Lp=4.126

Fig. 2. The lower eigenvalue of 1 vs. Lg,. Curves of different
values of L/Lp are presented, including the critical curve
L/Lg ~4.12.
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In view of Landau theory [21], the instability can
result in a second order phase transition since the
third order term of the energy expansion in am-
plitude vanishes by translational invariance. The
critical temperature 7., is determined by the
dependence of Lg on the temperature. The ampli-
tude |n, | grows near the critical temperature as
AL 2

Having found the parameters leading to the in-
stability, we are now able to evaluate the mean
square fluctuation near the critical point. The
amplitude of the step fluctuation is given by the
elements of the inverse matrix [1'] (see e.g., Ref.
[22]), in particular:

BB.AA
_2r 4

n/2L d )
i@l =7 [ 5
0

2m JAABE _ ()ABY
q q q

3)

where T is the temperature, and /¢ is the step
length.

When L, and Ly are comparable to the terrace
width L, the fluctuations in the limits of small
wavelength are:

(In*]) o (g:L > 1);

g:Ing.L

In the limit of large wavelength, (3) yields:
1

Il o - (gl < 1);

and finally, near the transition point, the mean
square fluctuations of the B-step diverge at the
critical wavelength:

(Il) ox :

2 2
VAIT = TP + (¢ - q0)

where A4 is a constant.

We use Eq. (3) to calculate the fluctuation of the
A-step and compare it with the results of Ref. [3].
For this purpose, we evaluate the integral in Eq.
(3) numerically for a general wave number ¢,, and
at temperature 966°C. The integral depends on
L/Ls and by fitting to the data of Ref. [3], we
found: L/Ls =~ 0.1. Fig. 3 shows the so obtained

(qx - QC)L < 1
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Fig. 3. Fitting the present theory (—) to the experimental (@)
power spectrum of the A-step shape function near the undu-
lation transition of the B-step. Experimental points are mea-
sured at 966°C, and are presented in Ref. [3]. The elastic
contribution to the A-step spectrum is too small to be distin-
guishable from the edge-stiffness theory (Fig. 4 in Ref. [3]).

spectrum of A-step. The step stiffness is extracted
by assuming L = 180 nm, ag = 0.3 nm, |f;, — f,| =
16 eV/nm?, E = 670 eV/nm® and ¢ = 0.3, i.e. J, =
Alog(La/aa) = 0.24 eV/nm. This value is compa-
rable to the one suggested in Ref. [3]. Indeed, Fig. 3
is similar (though different presentation) to Fig. 4
in Ref. [3], and the elastic interaction does not
contribute significantly to the A-step fluctuations
near the undulation point of the B-step (see the
limit gL > 1 below Eq. (3)).

The B-step fluctuations, depend on the coher-
ence length Lg. Therefore, before applying Eq. (3)
to the B-step fluctuations, lets discuss this length
and its physical significance. For this purpose, we
presume that the critical wavelength is 500 nm
(this value may be estimated for a particular ex-
periment by examining the LEEM images near the
critical temperature). Employing the relation be-
tween the critical wave number and the coherence
length (g. ~ 0.63/Lg), we suggest: Ly ~ 50 nm.
Accordingly, the B-step stiffness is found: y; =
Alog(Lg/ag) = 0.15 eV/nm. This value is larger by
a factor 15 than the one suggested in Ref. [3]. The
difference originates at the contribution of the
elastic interaction that was ignored in the previous
theory. In this context, Ref. [5] pointed out that
the possible error in the estimation of the step
stiffness in Ref. [3] is due to neglecting the negative
elastic interaction between unlike steps. The pre-

sent theory shows that the interaction between the
unlike steps introduces a positive contribution
(stabilizing the straight step above the critical
point). Hence, the stiffness value extracted in Ref.
[3] is different from the present value as a result of
ignoring the negative self-step interaction. (At the
critical point this interaction balances the contri-
butions due to the capillary and the unlike-step
interactions.) By the same argument, the consid-
eration of step features with a radius of curvature
is smaller than the coherent length (at the corners
of the “triangular step facet” or at the apex of
lens-shape islands [3,23]) should take into account
the elastic interaction. To conclude the discussion
of the coherence length, the fact that the transition
occurs only in doped specimens implies that dop-
ing changes the coherence length. This can be due
to the variation of the step stiffness and the surface
stress upon segregation to the edge and to the sur-
face terraces. In the absence of experimental data
on the fluctuation of the B-step, we calculate in
Fig. 4 (| |) for the above coherence length
(Lg =~ 50 nm). In contrast to the step A fluctua-
tions, the predicted spectrum of the B-step deviates
significantly from the ¢, > power law of the existing
step-stiffness theory. The peak seen in this figure
manifests the development of a soft mode near
the undulation transition, and located close to
the critical wave number. Therefore, experimental
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Fig. 4. Prediction of the B-step fluctuations near its undulation
transition (966°C). The peaked spectrum manifests the growth
of a soft mode. This spectrum deviates significantly from the
g;* power law of edge-stiffness theory.



measurements of the B-step fluctuations near the
critical point may reveal (or not) the significance
of the self-elastic interaction by searching for the
typical spectrum as demonstrated in Fig. 4.
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