Рентгеновское исследование термотропных мезофаз адсорбционной пленки н-триаконтанола на границе н-гексадекан-вода

А. М. Тихонов¹⁾

Институт физических проблем им. П.Л. Капицы РАН, 119334 Москва, Россия

Поступила в редакцию 23 октября 2017 г. После переработки 1 ноября 2017 г.

Методом рефлектометрии и диффузного рассеяния синхротронного излучения с энергией фотонов 15 кэВ исследована молекулярная структура адсорбированного слоя н-триаконтанола на границе н-гексадекан-вода в различных его фазовых состояниях. Согласно проведенному анализу данных, с понижением температуры ниже двумерного перехода пар-жидкость на межфазной границе происходит переход к многослойной адсорбции, вызванный, по-нашему мнению, особенностью в температурной зависимости концентрации мицелл в приповерхностном слое толщиной 100–200 Å.

DOI: 10.7868/S0370274X17230102

В адсорбционной пленке на границе н-алкан-вода возможны разнообразные обратимые двумерные переходы между поверхностными мезофазами жирных спиртов и кислот (липидов) [1–7]. Например, в монослое Гиббса фтор-алканола наблюдается фазовый переход твердое тело-пар [5, 8], а в монослое карбоновой кислоты - переход твердое тело-жидкость [9]. Ранее в работе [10] кратко сообщалось, что в адсорбционной пленке н-триаконтанола (спирт-С₃₀) на границе н-гексадекан-вода происходит термотропный переход жидкость-пар. В данной работе методами рентгеновского диффузного (незеркального) рассеяния и рефлектометрии с использованием синхротронного излучения экспериментально исследована молекулярная структура нейтральных поверхностных мезофаз этого липида. Показано, что с понижением температуры в относительно узком температурном интервале происходит переход из структуры шириной в ~ 3 Å к монослою толщиной ≈ 27 Å и далее к структуре толщиной 100-200 Å. Последний переход, по-нашему мнению, вызван возрастанием концентрации мицелл в приповерхностном слое.

На планарной границе масло–вода адсорбционную пленку можно рассматривать как двумерную термодинамическую систему с параметрами (p, T, c), где p – давление, а c – концентрация липида в объеме углеводородного растворителя [11–13]. Согласно работе [10] при p = 1 атм и $c \approx 0.6$ ммоль/кг переход жидкость–пар в адсорбционной пленке спирта- C_{30} на границе н-гександекан–вода наблюдается при $T_c \approx 300$ К. Соответствующая температурная зави-

симость межфазного натяжения $\gamma(T)$, измеренная методом Вильгельми, показана точками на рис. 1 [10, 14]. Изменение в наклоне $\gamma(T)$ связано с измене-

Рис. 1. Температурные зависимости межфазного натяжения $\gamma(T)$ для границ н-гексан-вода (кружки) и н-гексадекан-вода (точки) с адсорбированным слоем нтриаконтанола [10]. Линии – подгонка прямолинейных участков $\gamma(T)$ линейной функцией

нием поверхностной энтальпии при переходе $\Delta H = -T_c \Delta (\partial \gamma / \partial T)_{p,c} = 0.42 \pm 0.04 \, \text{Дж/м}^2$. В тоже время, переход в монослое спирта-C₃₀ на границе н-гексанвода (кружки на рис. 1) характеризуется в три раза большим значение $\Delta H = 1.3 \pm 0.1 \, \text{Дж/M}^2$.

 $^{^{1)}{\}rm e\text{-}mail:}$ tikhonov@kapitza.ras.ru

Измерения коэффициента отражения R и интенсивности поверхностного диффузного рассеяния I_n на границе н-гексадекан-вода проведены на станции X19С синхротрона NSLS с использованием излучения длиной волны фотонов $\lambda = 0.825 \pm 0.002$ Å, которая соответствует примерно утроенному значению критической энергии поворотного магнита X19 [15].

Пусть $\mathbf{k}_{\rm in}$, $\mathbf{k}_{\rm sc}$ – волновые вектора с амплитудой $k_0 = 2\pi/\lambda$ падающего и рассеянного лучей, соответственно (см. вставку на рис. 2). В системе координат, в которой начало O лежит в центре области засветки, плоскость xy совпадает с межфазной границей, ось Ox перпендикулярна к направлению луча, а ось Oz направлена по нормали к поверхности, противоположно силе тяжести, компоненты вектора рассеяния $\mathbf{q} = \mathbf{k}_{\rm in} - \mathbf{k}_{\rm sc}$ в плоскости границы $q_x \approx k_0 \phi$ и $q_y \approx k_0 (\alpha^2 - \beta^2)/2$, а компонента нормальная ей $q_z \approx k_0 (\alpha + \beta) (\alpha, \beta \ll 1, \phi \approx 0)$.

В соответствии с методикой, изложенной в работах [9, 16], образец межфазной границы приготавливали в термостатированной ячейке, которую далее размещали на оптическом столе с активной виброизоляцией. В качестве нижней объемной фазы использовали деионизированную воду (Barnstead, NanoPureUV) объемом ~ 100 мл, а в качестве верхней – примерно 50 мл раствора н-триаконтанола в нгексадекане с $c \approx 0.6$ ммоль/кг. Предельный углеводород $C_{16}H_{34}$ (температура плавления ≈ 291 K, температура кипения $\approx 560 \,\mathrm{K}$ и плотность $\approx 0.77 \,\mathrm{r/cm^3}$ при 298 К) предварительно подвергся очистке путем многократной фильтрации в хроматографической колонке [17]. Спирт-С₃₀ или С₃₀Н₆₂О дважды очищали путем перекристаллизации из пересыщенного раствора в н-гексане.

Измерения $R(q_z)$ при малых q_z накладывают ограничения на продольный (вдоль Oy) размер образца, который составляет 75 мм (поперечный размер 150 мм). Связано это, во-первых, с влиянием граничных условий у стенок ячейки на планарность межфазной границы. Во-вторых, при наименьших углах скольжения $\approx 4 \cdot 10^{-4}$ рад ($q_z \approx 0.007 \text{ Å}^{-1}$) и наименьшем вертикальном размере луча ≈ 10 мкм продольный размер области засветки образца составляет ~ 30 мм. Достаточно плоскую область границы н-гексадекан-вода такой ширины и пригодную для измерения рассеяния нам удалось получить только в ячейках толщиной более 75 мм.

Параметры оптической схемы измерений подробно рассмотрены в [9, 15, 18]. При малых углах скольжения вертикальный размер падающего луча фиксируют щели, отстоящие от центра ячейки на расстоянии ~ 120 мм, а естественная расходимость пуч-

Письма в ЖЭТФ том 106 вып. 11-12 2017

ка ~10⁻⁴ рад подавлена до значения ~2 · 10⁻⁵ рад двумя входными щелями с зазором ~10 мкм на расстоянии ~600 мм. В области больших углов скольжения ($q_z > 0.2 \text{ Å}^{-1}$) максимальный вертикальный размер входных щелей 0.4 мм при измерениях $R(q_z)$ задан выбранным вертикальным угловым разрешением детектора в плоскости yz, $\Delta\beta \approx 1.2 \cdot 10^{-3}$ рад (щель с вертикальным зазором 0.8 мм на расстоянии ≈ 680 мм от центра образца).

На рис. 2 показаны зависимость $R(q_z)$ для разных фазовых состояний адсорбционной пленки

Рис. 2. Коэффициент отражения R как функция q_z для разных фазовых состояний адсорбционной пленки н-триаконтанола на границе н-гексадекан-вода: 1 – мультислой при 296.1 К ($T < T^*$); 2 – жидкий монослой при 298.0 К ($T^* < T < T_c$); 3 – пар при 321.0 К ($T > T_c$). Непрерывные линии – модели капиллярноволновых структур. Вставка: кинематика поверхностного рассеяния описана в системе координат, в которой плоскость xy совпадает с границей н-гексадекан-вода, ось Ox перпендикулярна к направлению пучка и ось Oz направлена по нормали к поверхности

н-триаконтанола. При $q_z < q_c = (4\pi/\lambda)\alpha_c \approx 0.01 \text{ Å}^{-1}$ падающий луч испытывает полное внешнее отражение $R \approx 1$. Значение угла полного внешнего отражения $\alpha_c = \lambda \sqrt{r_e \Delta \rho/\pi} \approx 6 \cdot 10^{-4}$ рад или $\approx 0.04^{\circ}$ (где $r_e = 2.814 \cdot 10^{-5} \text{ Å}$ – классический радиус электрона) для границы н-гексадекан–вода определяется разницей $\Delta \rho = \rho_{\rm w} - \rho_{\rm h}$ в объемных электронных концентрациях в углеводородном растворителе $\rho_{\rm h} \approx 0.27 \ e^-/{\rm \AA}^3$ и в воде $\rho_{\rm w} \approx 0.33 \ e^-/{\rm \AA}^3$.

На рис. 3 изображены данные для нормированной интенсивности поверхностного незеркального рассе-

Рис. 3. Угловые зависимости интенсивности поверхностного рассеяния I_n при угле скольжения $\alpha \approx 3.3 \cdot 10^{-3}$ рад для разных фазовых состояний адсорбционной пленки н-триаконтанола на границе н-гексадекан-вода: 1 - 296.0 K (мультислой, $T < T^*$); 2 - 298.0 K (жидкий монослой, $T^* < T < T_c$); 3 - 325.2 K (пар, $T > T_c$). Непрерывные линии – модели некапиллярно-волновых структур

яния $I_n(\beta) \equiv (I(\beta) - I_b(\beta))/I_0$ (условие нормировки $I_n(\alpha) \equiv 1$), полученные при фиксированном угле скольжения $\alpha \approx 3.3 \cdot 10^{-3}$ рад ($\approx 0.19^{\circ}$) для разных фазовых состояний межфазной границы; $I(\beta)$ – число фотонов, рассеянных объемом образца и отраженных (зеркально и диффузно) поверхностью в области засветки площадью $A_0 \approx 30 \, {\rm mm}^2$ в центре межфазной границы в направлении β ; I_0 – величина, пропорциональная интенсивности падающего луча, которая контролировалась в эксперименте непосредственно перед вхождением луча в ячейку; $I_b(\beta)$ – число фотонов рассеянных в объеме н-гексадекана по пути к границе, методика определения которого подробно описана в [16]. Самый интенсивный пик в зависимости $I_n(\beta)$ соответствует зеркальному отражению $\beta = \alpha$, а пик в диффузном фоне при $\beta \rightarrow 0$ иллюстрирует явление возрастания интенсивности рассеяния при $\beta = \alpha_c$ [19]. При измерении $I_n(\beta)$ использовался коллимированный луч с угловой расходимостью в вертикальной плоскости $\Delta \alpha \approx 5 \cdot 10^{-5}$ рад, а $\Delta \beta \approx 3 \cdot 10^{-4}$ рад.

По данным для $R(q_z)$ и $I_n(\beta)$ нами получена информация о поперечной структуре межфазной границы, используя формализм борновского приближения искаженных волн [20]. В соответствии с модельным подходом, изложенным в работах [16, 18], интерпретация экспериментальных данных сводится к нахождению параметров функции структурного фактора границы $\Phi(q)$, которая, в свою очередь, задается выбранной моделью распределения электронной плотности $\langle \rho(z) \rangle$ поперек межфазной границе. Модельные симметричные профили $\langle \rho(z) \rangle$ строятся с помощью функции ошибок erf(x), которая используется в стандартной теории капиллярных волн [21].

Качественная модель строения адсорбционной пленки спирта-C₃₀ на границе н-гександекан-вода, изображенная на рис. 4, позволяет согласованно

Рис. 4. Модель структуры адсорбционной пленки н-триаконтанола C₃₀H₆₂O на границе н-гексадекан-вода

интерпретировать экспериментальные данные рефлектометрии и незеркального рассеяния, используя минимальное количество подгоночных параметров. Слои 1 и 2 описывают структуру монослоя Гиббса. Слой 1 формируется с участием полярных головных частей – CH_2OH (длиной ≈ 2.4 Å), а слой 2 образован гидрофобными углеводородными хвостами –С29 Н59 (длиной ≈ 38.3 Å). С повышением температуры в окрестности Т_с значительная доля адсорбированных в гиббсовском монослое молекул C₃₀H₆₂O испаряется с межфазной границы, растворяясь в объеме углеводородного растворителя, и таким образом реализуется газовая фаза монослоя. Дополнительный толстый слой 3 необходим для качественного объяснения высокой интенсивности скользящего незеркального рассеяния, которое для всех фазовых

состояний адсорбционной пленки превышает расчетную для капиллярно-волнового канала упругого рассеяния.

При $T > T_c$, в газовой фазе границы зависимости $R(q_z)$ и $I_n(\beta)$ достаточно хорошо описываются однопараметрической моделью со структурным фактором:

$$\Phi(q)_V = e^{-\sigma^2 q^2/2}.$$
 (1)

Минимальная величина квадрата параметра σ^2 , определяющего ширину границы раздела, ограничивается значением квадрата "капиллярной ширины"

$$\sigma_0^2 = \frac{k_{\rm B}T}{2\pi\gamma(T)} \ln\left(\frac{Q_{\rm max}}{Q_{\rm min}}\right),\tag{2}$$

которая, в свою очередь, задается коротковолновым пределом в спектре капиллярных волн $Q_{\text{max}} = 2\pi/a$ $(a \approx 10 \text{ Å} - \text{по порядку величины межмолекулярное}$ расстояние) и $Q_{\text{min}} = q_z^{\text{max}} \Delta \beta/2 (q_z^{\text{max}} - \text{максималь-ное значение } q_z$ в эксперименте) [22–26].

Рассчитанная по (1) зависимость $R(q_z)$ при T > $> T_{\rm c}$ с подгоночным значением $\sigma = 3.4 \pm 0.2$ Å представлена на рис. 2 непрерывной линией 3. В пределах погрешности σ совпадает с $\sigma_0 = 3.59 \pm 0.04$ Å для этого измерения. С одной стороны, этот расчет фактически без свободных параметров описывает зависимость $R(q_z)$. С другой стороны, при $T > T_c$ наблюдаемая интенсивность диффузного рассеяния заметно выше, чем расчетная по (1) и (2) (непрерывная линия 3 на рис. 3). Для описания $I_n(\beta)$ с помощью (1) подгоночное значение эффективной ширины достигает $\sigma \approx 6.5$ Å (штриховая линия 3 на рис. 3) при том, что расчет по (2) дает $\sigma_0 \approx 4.3$ Å с учетом разницы в $\Delta \beta$ и q_z^{\max} при измерениях I_n и R. Это свидетельствует о наличие у границы внутренней структуры шириной более $\sqrt{\sigma^2 - \sigma_0^2} \sim 5 \text{ Å}$, имеющей некапиллярноволновую природу [27].

При $T < T_c$ коэффициент отражения $R(q_z)$ в жидкой фазе монослоя Гиббса достаточно хорошо описывается качественной двухслойной моделью структурного фактора (непрерывные линии 1 и 2 на рис. 2):

$$\Phi(q)_L = \frac{e^{-\sigma^2 q^2/2}}{\Delta \rho} \sum_{j=0}^2 \left(\rho_{j+1} - \rho_j\right) e^{-iq_z z_j}, \qquad (3)$$

где $z_0 = 0$, $\rho_0 = \rho_w$, а $\rho_3 = \rho_h$. Электронные концентрации $\rho_1/\rho_w = 1.10 \pm 0.03$ и $\rho_2/\rho_w = 0.90 \pm 0.03$ с координатами границ слоев $z_1 = 10 \pm 2$ Å, $z_2 \approx 27$ Å. Полная толщина монослоя Гиббса $z_2 - z_0 = 27 \pm 2$ Å. Для кривой 2 расчетное значение $\sigma_0 = 3.7 \pm 0.1$ Å ($\sigma_0 = 4.1 \pm 0.1$ Å для кривой 1) в пределах погрешности эксперимента совпадает с подгоночными $\sigma = 3.8 \pm 0.2$ Å ($\sigma = 4.3 \pm 0.2$ Å для кривой 1).

Письма в ЖЭТФ том 106 вып. 11-12 2017

В области $T_c > T > T^* \approx 296$ К наблюдаемая интенсивность рассеяния $I_n(\beta)$ незначительно превышает расчетную (непрерывная линия 2 на рис. 3) и может быть описана выражением (3) с эффективной шириной $\sigma \approx 5.9$ Å (штриховая линий 2 на рис. 3), т.е. большей, чем определенной по (2) $\sigma_0 \approx 4.3$ Å. Наконец, при $T < T^*$ интенсивность $I_n(\beta)$ значительно возрастает (см. кривую 1 на рис. 3). Если эти данные описывать с помощью (3), то подгонка ширины дает $\sigma \approx 30$ Å в то время, как $\sigma_0 \approx 5.4$ Å.

В экспериментах рассеяния область углов наблюдения диффузного фона ограничена $\beta < 0.006$ рад или $q_z < q_z^* \sim 0.07 \,\text{\AA}^{-1}$, в то время как максимальное значение q_z^{max} задействованное в эксперименте рефлектометрии составляет примерно 0.4 Å⁻¹. С одной стороны, данные рефлектометрии достаточно хорошо описываются параметром σ_0 , рассчитанным по (2). С другой стороны, эффективная шероховатость поверхности по данным диффузного рассеяния составляет > 6 Å, что естественно связать с наличием некоторой протяженной приповерхностной структуры (слой 3 на рис. 4) толщиной, большей чем $2\pi/q_z^* \approx$ 100 Å. Тогда качественно объяснить высокую интенсивность скользящего рассеяния при $T < T^* \approx 296 \,\mathrm{K}$ можно в рамках трехслойной модели (многослойная адсорбция) [16]:

$$\Phi(q)_{L}^{*} + \frac{\delta\rho e^{-\sigma_{3}^{2}q_{z}^{2}/2}}{\Delta\rho}e^{-iq_{z}z_{3}}.$$
(4)

Второй член в (4) описывает третий слой толщиной $z_3 - z_2$ и плотностью $\rho_{\rm h} + \delta \rho$; параметр σ_3 учитывает некапиллярно-волновую структуру границы слоя 3 с объемом растворителя; $\Phi(q)_L^*$ определено выражением (3) при замене $\rho_3 = \rho_{\rm h} + \delta \rho$.

Расчет $I_n(\beta)$ с помощью (4) показан на рис. 3 штриховой линией для кривой 1. Оценочная толщина толстого слоя $z_3 - z_2 \approx 200$ Å, параметр $\delta \rho / \rho_w \approx$ $\approx 0.02 \div 0.09$, а ширина $\sigma_3 \approx 20 \div 40$ Å. Плотность $\rho_h + \delta \rho$ соответствует электронной концентрации в высокомолекулярной алкановой жидкости [28]. Экспериментально наблюдаемое уширение центрального пика на кривой 1, возможно, связано с малоугловым рассеянием на мицеллах в объеме н-гексадекана, которое не учитывалось при расчетах $I_n(\beta)$.

Модельные профили электронной концентрации $\langle \rho(z) \rangle$ для мезофаз адсорбционной пленки спирта-С₃₀, нормированные на $\rho_{\rm w}$, показаны на рис. 5. При $T > T_{\rm c}$ в адсорбционной пленке реализуется газовая фаза монослоя Гиббса, характеризующаяся одним параметром – шириной границы $\sigma \approx 3.4$ Å (структура-3). В интервале $T^* < T < T_{\rm c}$ реализуется структура-2 – жидкий монослоя Гиббса толщиной

Рис. 5. Модельные профили электронной концентрации $\langle \rho(z) \rangle$ адсорбционной пленки спирта-C₃₀, нормированные на электронную концентрацию в воде при нормальных условиях $\rho_{\rm w} = 0.333 \ e^-/{\rm \AA}^3$: 1 – модель с протяженным слоем (4) при $T < T^*$, $\sigma = 4.3 \, {\rm \AA}$ и $\sigma_3 = 30 \, {\rm \AA}$; 2 – модель жидкого монослоя Гиббса (3) при $T^* < T < T_c$, $\sigma = 3.8 \, {\rm \AA}$; 3 – модель (1) газовой фазы при $T > T_c$, $\sigma = 3.4 \, {\rm \AA}$. Для удобства сравнения профиль 2 сдвинут вдоль оси ординат на +0.1, а профиль 1 на +0.2. Положение границы между полярной областью молекул н-триаконтанола и водой выбрано при z = 0

 (27 ± 2) Å. Наблюдаемая интенсивность незеркального рассеяния в этих фазовых состояний адсорбционной пленки превышает расчетную для капиллярноволнового канала упругого рассеяния и свидетельствует о присутствии в приповерхностной структуре слабо контрастного слоя 3 толщиной ~100 Å. Структура-1 при $T < T^*$ отличается от структуры-2 наличием плотного ($\rho_3 \approx 0.9 \rho_w$) и толстого (~200) Å слоя 3. Такое структурное изменение можно назвать многослойной адсорбцией.

Участие агрегатов н-триаконтанола–мицелл в организации структуры адсорбционной пленки, по нашему мнению, может объяснить неожиданно высокий фон диффузного рассеяния во всех фазовых состояниях границы н-гексадекан–вода, который невозможно описать рассеянием на тепловых флуктуациях межфазной границы. Характерный диаметр сферической мицеллы примерно равен двум длинам молекулы спирта-C₃₀, т.е. ≈ 80 Å ($\sim 2\pi/q_z^*$). Неполное заполнение ими приповерхностного слоя 3 толщиной ~ 200 Å вполне может создать наблюдаемую нечеткость или большую ширину $\sigma \approx 30$ Å границы адсорбционной пленки с объемом.

Отметим, что описанные структуры нейтральных поверхностных мезофаз спирта- C_{30} на границе н-гексадекан-вода заметно отличаются от структуры как твердой фазы его монослоя Ленгмюра на поверхности воды, так и от параметров его мезофаз на границе н-гексан-вода [29]. Например, наблюдаемая толщина монослоя Гиббса н-триаконтанола на границе н-гександекан – вода 27 ± 2 Å (площадь на молекулу $A = 29 \pm 3$ Å²) заметно меньше, чем 36 ± 2 Å ($A = 24 \pm 1$ Å²) на границе н-гексан-вода.

В заключение, анализ данных рассеяния показывает, что с понижением температуры T за двумерным переходом конденсации спирта- C_{30} в жидкий монослой Гиббса в T_c на межфазной границе следует в T^* переход к его многослойной адсорбции, которая, по-нашему мнению, вызвана возрастанием концентрации мицелл в приповерхностном слое толщиной 100–200 Å. Ранее уже сообщалось о наблюдении подобных переходов в двухкомпонентных адсорбционных пленках фтор-алканолов и в однокомпонентных пленках спирта- C_{30} и кислоты- C_{30} на границе н-гексан-вода [9, 30, 31].

Синхротрон NSLS использовался при поддержке Департамента энергетики США по контракту # DE-AC02-98CH10886. Станция X19С финансировалась из фондов ChemMatCARS, Университета Чикаго, Университета Иллинойса в Чикаго и Университета Стони Брук.

- N. Matubayasi, K. Motomura, M. Aratono, and R. Matuura, Bull. Chem. Soc. Jpn. 51, 2800 (1978).
- M. Lin, J. L. Ferpo, P. Mansaura, and J. F. Baret, J. Chem. Phys. 71, 2202 (1979).
- Y. Hayami, A. Uemura, M. Ikeda, M. Aratono, and K. Motomura, J. Colloid Interface Sci. 172, 142 (1995).
- T. Takiue, T. Matsuo, N. Ikeda, K. Motomura, and M. Aratono, J. Phys. Chem. B **102**, 4906 (1998).
- Z. Zhang, D. M. Mitrinovic, S. M. Williams, Z. Huang, and M. L. Schlossman, J. Chem. Phys. **110**, 7421 (1999).
- M. L. Schlossman, M. Li, D. M. Mitrinovic, and A. M. Tikhonov, High Performance Polymers 12, 551 (2000).
- P.S. Venkatesh, T. Takiue, G. Guangming, A.M. Tikhonov, N. Ikeda, M. Aratono, and M.L. Schlossman, J. Dispers. Sci. Technol. 27, 715 (2006).
- T. Takiue, A. Yanata, N. Ikeda, K. Motomura, and M. Aratono, J. Phys. Chem. **100**, 13743 (1996).
- 9. А. М. Тихонов, Письма в ЖЭТФ **104**, 318 (2016).
- A. M. Tikhonov and M. L. Schlossman, J. Phys.: Condens. Matter 19, 375101 (2007).

Письма в ЖЭТФ том 106 вып. 11-12 2017

711

- J. W. Gibbs, Collected Works, Vol. 1, Dover, N.Y. (1961).
- 12. R.S. Hansen, J. Phys. Chem. 66, 410 (1962).
- K. Motomura, N. Matubayasi, M. Aratono, and R. Matuura, J. Colloid Interface Sci. 64, 356 (1978).
- A. W. Adamson, *Physical Chemistry of Surfaces*, 3rd ed.; John Wiley & Sons, N.Y. (1976).
- M. L. Schlossman, D. Synal, Y. Guan, M. Meron, G. Shea-McCarthy, Z. Huang, A. Acero, S. M. Williams, S. A. Rice, and P. J. Viccaro, Rev. Sci. Instrum. 68, 4372 (1997).
- 16. А.М. Тихонов, Письма в ЖЭТФ **102**, 620 (2015).
- A. Goebel and K. Lunkenheimer, Langmuir 13, 369 (1997).
- 18. А.М. Тихонов, Письма в ЖЭТФ **105**, 737 (2017).
- 19. Y. Yoneda, Phys. Rev. 131, 2010 (1963).
- S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).
- F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).

- A. Braslau, M. Deutsch, P.S. Pershan, A.H. Weiss, J. Als-Nielsen, and J. Bohr, Phys. Rev. Lett. 54, 114 (1985).
- D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellogg, P. S. Pershan, and B. M. Ocko, Phys. Rev. A 41, 5687 (1990).
- 24. A. M. Tikhonov, J. Phys. Chem. B 110, 2746 (2006).
- 25. A. M. Tikhonov, J. Chem. Phys 124, 164704 (2006).
- 26. A. M. Tikhonov, J. Phys. Chem. C 111, 930 (2007).
- D. M. Mitrinovic, A. M. Tikhonov, M. Li, Z. Huang, and M. L. Schlossman, Phys. Rev. Lett. 85, 582 (2000).
- D. M. Small, The Physical Chemistry of Lipids, Plenum Press, N.Y. (1986).
- A. M. Tikhonov and M. L. Schlossman, J. Phys. Chem. B 107, 3344 (2003).
- 30. А.М. Тихонов, Письма в ЖЭТФ 106, 561 (2017).
- T. Takiue, T. Tottori, K. Tatsuta, H. Matsubara, H. Tanida, K. Nitta, T. Uruga, and M. Aratono, J. Phys. Chem. B 116, 13739 (2012).