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Since the discovery of the faceting of helium crys-
tals, there have been many experimental and theoretical
studies on the energy of elementary steps, the step–step
interactions, and the surface energy anisotropy (for a
review, see [1]). Most of the experimental results were
obtained by dynamical methods, such as measurements
of crystallization wave spectra [2, 3], the surface mobil-
ity near the roughening transition [4] in 

 

4

 

He, and the
spiral growth velocity [5] in 

 

3

 

He. On the other hand, all
these parameters can also be measured statically.

We begin with a discussion of the possibility of
measuring the (free) energy of elementary steps 

 

β

 

under static conditions. It seems that 

 

β

 

 could be derived
directly from measurements of the facet’s size. As was
shown by Landau [6], the equilibrium facet size is pro-
portional to 

 

β

 

. However, this does not work in practice,
because the corresponding relaxation times are
extremely long: in contrast to a rough surface, the
kinetic growth coefficient of a facet is zero at small
driving forces. This means that, under stationary condi-
tions, the facet is always metastable and its size is far
from the equilibrium value. In this Letter, we propose a
new method to measure 

 

β

 

 under static conditions not
affected by this disadvantage. The more precise analy-
sis also opens new experimental possibilities for studies
of the surface energy anisotropy.

Consider a crystal with a horizontal (

 

xy

 

 plane) facet
in a cell with vertical (

 

z

 

 axis) walls. There is some con-
tact angle due to the difference 

 

�

 

 of the crystal–wall and
the liquid–wall energies. This results in bending of the
crystal surface near the walls on a scale of capillary
length of ~1 mm (Fig. 1a). We assume the cell is rela-
tively large in the

 

 y

 

 direction (along the wall). One can
then neglect the effects of shape distortion in the 

 

y

 

direction. The equilibrium crystal shape 

 

Z

 

(

 

x

 

) corre-
sponds to the minimum of the sum of the surface and
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the gravitational energies for a given crystal volume,

(1)

where 

 

α

 

 is the crystal–liquid boundary energy, the
angle 

 

θ

 

 is defined by tan

 

θ

 

 = 

 

∂

 

x

 

Z

 

,  is the density differ-
ence of the crystal and liquid, and 

 

λ

 

 is the Lagrange
multiple. The variational procedure gives

(2)

where the prime denotes an angular derivative. At the
cell wall 

 

θ

 

 = 

 

θ

 

0

 

, where 

 

θ

 

0

 

 is a solution of the equation

 

α

 

'cos

 

θ

 

0

 

 + 

 

α

 

sin

 

θ

 

0

 

 = 

 

�

 

. For a wall inclined by an angle 

 

ψ

 

(Fig. 1), this boundary condition should be replaced by

(3)

This would yield a continuous dependence 

 

θ

 

0

 

(

 

ψ

 

) if 

 

α

 

and 

 

�

 

 were smooth functions. In fact, the reality is com-
plicated by the 

 

α

 

' discontinuity. At small 

 

θ

 

, we have

(4)

where

 

 h

 

 is the step height and the last term is due to the
step–step interaction (electrostatics [7], elasticity [8],
and thermal fluctuations [7, 9]). From (3) and (4), we
find

(5)
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Fig. 1.

 

 Crystal shape evolution under the wall inclination:
(a) 

 

ψ

 

 = 0, (b) 

 

ψ

 

 < 

 

ψ

 

–

 

, (c) 

 

ψ

 

–

 

 < 

 

ψ

 

 < 

 

ψ

 

+

 

, (d) 

 

ψ

 

 > 

 

ψ

 

+

 

.
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These two cases are presented in Fig. 1b and 1d. How-
ever, in the interval 

 

ψ

 

–

 

 < 

 

ψ

 

 < 

 

ψ

 

+

 

 defined by

(6)

solution (5) makes no sense. When the inclination
approaches this interval both from smaller and bigger
angles, the asymptotic expression 

 

θ

 

0

 

 

 

∝ |ψ

 

 – 

 

ψ

 

±

 

|

 

1/2

 

 is
valid. Inside the interval, the meniscus vanishes com-
pletely and the facet touches the wall (Fig. 1c). It is easy
to show that this state is stable. Indeed, a change of the
state would be possible only via formation of a “posi-
tive” (upward shift) or “negative” (downward shift)
atomic terrace of macroscopic width 

 

L

 

 

 

�

 

 

 

R, where R is
the characteristic size of the crystal. This requires an
energy of

per unit length of the terrace, where +(–) corresponds to
a “positive” (“negative”) terrace. The last term is small
with respect to the others, because λ ~ α0/R. We see that
δE± > 0 inside the interval (ψ–, ψ+).

If the crystal orientation dependence of � can be
neglected, from (6) we obtain

Thus, we have a new means of finding the value of β,
because α0 is known with reasonable accuracy [10],
and the angles ψ± can be measured directly. An impor-
tant advantage of this method is that it avoids the prob-
lem of metastability. Indeed, the cases ψ = ψ± corre-
spond to the wetting point of the wall by “negative” and
“positive” terraces, respectively (i.e., E±  0). This
means that the terraces can be formed without any mac-
roscopic barriers.

Note that instead of tilting the cell wall, one can also
control boundary condition (3) with an electric field [2].

Further, we consider a new possibility to measure
α(θ). The first integral of Eq. (2) is

(7)

where C is a constant. Let Z = 0 at the level of the facet.
Then, from (7) we have C = –α0. It is worth mentioning
that condition (3) is valid for the juncture line between
the curved surface and the facet. In this case, � = α0, and
the boundary condition is satisfied if the juncture is
smooth. Let us find the function Z = Z(θ) from (7):

An interesting situation arises in the case of asymmetric
conditions. Suppose that Z has opposite signs at the
right and left cell walls (Fig. 2). The only possibility to
have the same level of the facet Z = 0 on both sides is to
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fix the Lagrange multiple λ = 0. Under this condition,
the meniscus becomes rigidly determined, with no
dependence on the crystal size. This shape fixation phe-
nomenon exists for relatively large crystals when the
facet is presented. The value of facet size does not con-
tain essential information if λ = 0, but the small-angle
asymptotic expression of the crystal profile

gives the step–step interaction constant γ. In the general
case, consider Eq. (7) as an ordinary differential equa-
tion for the function α(θ). One can measure the func-
tion Z = ±Z±(θ) and put the data into Eq. (7). Integration
over θ > 0 yields

Here,  is just β/h, because there is no other singular
term ∝|θ| at θ  0.
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