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Expressions for the acoustoelectric current and the acousto-emf are derived without any assumptions 
concerning the conduction-electron collision mechanism or dispersion law. The calculation is carried 
through for the case of a sound wave whose wavelength is considerably smaller than the electron mean 
free path. The resulting formulas permit the effect of a magnetic field to be taken into account. 

PACS numbers: 72.50. + b 

When sound is absorbed by a metal, the transfer of 
momentum from the sound wave to the conduction elec- 
trons may give r ise  to a current (called the acousto- 
electric current) o r ,  in the case of an open circuit, to a 
potential difference between the ends of the specimen 
(the acousto-emf).' 

When the wavelength A =  2n/q of the sound is consider- 
ably shorter than the electron mean free path I 
(when ql>> I ) ,  the sound wave can be treated a s  a packet 
of coherent phonons having a 6-function distribution 
N(k) in wave-vector space1': 

where k is the current phonon wave vector, @ i s  the 
sound energy flux density, and w, and s, are  the fre- 
quency and group velocity of a sound wave with the wave 
vector q (if the elastic anisotropy of the metal can be 
neglected, the group and phase velocities s, and S, of the 
sound will be equal). 

To calculate the dragging force exerted by the phonons 
on the electrons one can use the usual collision integral 
for the electron-phonon interaction: which also takes 
the presence of nonequilibrium phonons into a ~ c o u n t . ~  
Such an approach was used in Ref. 6. The expression 
obtained in Ref. 6 for the acoustoelectric current dens- 
tiy jA (see (7)) is applicable for an arbitrary conduc- 
tion-electron dispersion law, but, as is shown in this 
paper, it is limited to the T approximation. The pro- 
blem addressed here is to construct a theory of the 
acoustoelectric effect that would be free of this approx- 
imation. In addition, the formulas obtained here make it 
possible to take account of the part played by an exter- 
nal magnetic field (within the limitations of the theory 
of galvanomagnetic phenomena7). 

We shall use the operator l@ to describe the collisions 
of the electrons with thermal phonons and lattice de- 
fects. - ---. The kinetic equation for the addition f(p) to the 
equilibrium Fermi distribution function F(E,) for the 
conduction electrons, linearized in +, has the form 
(see Refs. 8 and 9) 

where 

2n cD 
~JA=-- {lgp-,q.,I'[F(e,-n,) -F(e?) 18 (e?-nq-ep+A@,) 

A hoqsq 
+lgp+nq.,lz[F(~p+nq) -P(e,) 16 (e,+r.-ep-hoq)), 

and g,.,, is  the electron-phonon interaction matrix ele- 
ment. The first  term on the left in Eq. (2) was intro- 
duced to describe the part played by an external mag- 
netic field H. The electric field E may be applied to 
the conductor independently, but it may also be induced 
by the sound flux, and in that case it is determined from 
the condition j = 0 and represents the acousto-emf (the 
equation has been linearized in E a s  well a s  in +). We 
neglect the term v. af/ar that represents the space 
dispersion of the electronic properties since the sound 
attenuation length s/I' is usually considerably longer 
than the electron mean free path I .  

We note that the collision operator fi may also de- 
scribe the dragging of phonons by e l e ~ t r o n s . ~  In this 
case,  by ~ we must understand the operator that is ob- 
tained after eliminating the nonequilibrium addition to 
the Bose distribution for the thermal phonons from the 
two kinetic equations (those for the electrons and for the 
phonons-see Ref. 8, Sec. 25). In what follows we shall 
not consider specific collision mechanisms, but shall 
only make use of very general properties of @. 

Because of the 6-function factors in the quantity .!IA on 
the right-hand side of the kinetic equation (2), it might 
seem that in calculating the acoustoelectric effects one 
could ignore the integral character of the operator l@ 
i.e. that one could neglect the arrival term in ~ and (in 
analogy with the theory of the anomalous skin effect'') 
introduce a relaxation time T,  that depends on the quasi- 
momentum p [see formula (5) of Ref. 61. However, this 
is not the case. Although electrons of the q v =  w, 
strip actually contribute to the acoustoelectric current, 
to the extent that the operator W i s  of integral charac- 
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t e r  all  the electrons at the Fermi surface take part in 
forming the distribution function for the strip elec- 
trons.*' 

Using the formal solution of Eq. (2), 

f =Pa-* (u) ( (uA+uC) } -Pa-* (u"} +&2ia-1 {uc}, (4) 

we can calculate the current density j = jA+ jC: 

where g(p,H) is a solution of the kinetic equation 

used in the theory of the galvanomagnetic properties of 
metals: and when H= 0, in the theory of electrical con- 
ductivity. 

Regardless of the electron-scattering mechanism, the 
electrical conductivity tensor satisfies the Onsager re- 
lations : 

As a rule, it is Eq. (8), and not the specific structure of 
Eq. (6), that assures the hermiticity of @, and in what 
follows we shall assume that W is hermitiar~.~'  This 
makes it possible to express the acoustoelectric current 
in the form 

According to Eqs. (9) and (3), the acoustoelectric cur- 
rent density jA is the sum of two integrals. If we intro- 
duce the new variable pf = p  -tiq into the first  of these 
integrals and take account of the fact that the matrix 
g,,,, is hermitian (so that (g,,,, 1 2 =  Igp,,D(2) we can ex- 
press  jf in the following compact form: 

The momentum tiq of the phonons responsible for the 
acoustoelectric effect i s  considerably smaller than the 
Fermi momentum of the conduction electrons. This 
allows us  to expand Eq. (10) in powers of qi and retain 
only the first  nonvanishing term; this yields 

Here p, and v; are  the projections of the quasimomen- 
tum p and velocity v onto the direction of the sound 
wave vector4' q,Ap is the corresponding component of 
the renormalized deformation potential determined by 
the matrix element g,,,,, 

and a is the interatomic distance. Then if .we make use 
of the fact that the energy dependence of aF/a& contains 
a 6-function factor, we reach the following final expres- 
sion: 

This formula shows that the acoustoelectric current jA 
can be expressed in terms of the vector $I, which is 
known for the case H= 0 from the theory of electrical 
conductivity, and for the case H+ 0 from the theory of 
galvanomagnetic phenomena (see Refs. 7 and 8). 

In the absence of a magnetic field (H< 0) is equal to 
the vector mean free path l(p) (li(p)= equ i} ) ,  i.e. 

In the 7 approximation 1, = rui (7 = const! ) we obtain 
the expression 

for the projection of the acoustoelectric current in the 
direction of q ,  which agrees with formula (7) of Ref. 6 
and contains the component m: of the effective mass in 
the direction of q (82~/ap: = l/m,*). 

Formula (15) is also valid, to terms of the order of 
(s/v,)jA, for an arbitrary collision operator fi, but only 
if, the strip v,= 0 (or ,  what is the same thing, q .  v =  0) 
lies in the symmetry plane of the Fermi-surface cavity 
along which i t   passe^.^' 

The acousto-emf i s  determined by the condition that 
the total current j vanish [see Eqs. (5) and (6)) 

To analyze the above equations for specific dispersion 
laws and collision mechanisms and to compare their 
predictions with experimental data a re  beyond the scope 
of this paper. We note only that a comparison of form- 
ulas (14) and (16) with the expression 

for the absorption coefficient for short-wave sound2 that 
shows that the anisotropy need not be the same for 
sound absorption as the the acoustoelectric effect.8*12 

As was shown in Ref. 6, in the case of a quadratic dis- 
persion law the Weinreich relation13 (EA = k re/( elns) 
follows from formulas (15) and (16). Formulas (13) and 
(16) show that the acoustoelectric effect should depend 
substantially on the magnetic field H, the quantity wc7, 
where wc= e ~ / c m *  is the cyclotron frequency, serving 
a s  a measure of the magnetic field strength; further, all  
the results a re  very sensitive to the structure of the 
electron spectrum of the metal; to the topology of the 
Fermi surface (whether i t  is open o r  closed); and to 
the ratio of the number of electrons to the number of 
holes. We emphasize that the  quantities jA and EA do 
not have the same field dependences here a s  in the 
theory of the galvanomagnetic phenomena. The study of 
these field dependences will be the subject of a separate 
paper. 

In concluding, we take the occasion to thank Yu. K. 
Dzhikaev, N. V. ~ a v a r i t s k i l ,  and I. Lifshitz for their 
interest in the work and for discussing the results. 
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 his approach has a rigorous basis for the case of longitudi- 
nal sound2vs but does not take into account the transformation 
of a transverse sound wave into an electromagnetic wave. 
This transformation leads to additional sound absorption ow- 
ing to the evolution of Joule heat, and this substantially al- 
ters  the frequency dependence of the absorption coefficient 
when A= 6(w), where 6(w) is the skin penetration depth for 
electromagnetic wave of the sound frequency w. The sound 
absorption coefficient resulting from this mechanism is of 
the same order as  the absorption coefficient due to the de- 
formation interaction! The formulas for the acoustoelectric 
effect presented below are exact for longitudinal sound and 
are  correct in order of magnitude for transverse sound [when 
h* 6(w)l. Strictly speaking, the formulas derived here de- 
scribe the acoustoelectric effect for ql>> 1, which is due to 
the deformation interaction. 

"we are  indebted to P. E. Zil'berman for calling our attention 
to this fact. 

 he hermiticity of 6 for the case of electron scattering by 
impurities and phonons has been directly verified (see Ref. 
11). The problem of the hermiticity of W and the possible 
consequences of its violation has not been thoroughly studied. 

"we note that if the sound does not propagate along one of the 
selected crystallographic directions, q will not be parallel 
to e,, while the energy flux @ will be parallel to sc 

"A crystal symmetry plane is always a symmetry plane of the 
Fermi surface, but such a plane need not intersect the Fermi 
surface. Not every symmetry plane of the gap in the Fermi 
surface is a crystal symmetry plane. 
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V. D. Kuiakovskil, I. V. Kukushkin, and V. B. Timofeev 
Institute of Solid State Physics, USSR Academy of Sciences 
(Submitted 21 August 1979) 
Zh. Eksp, Teor. Fi. 78,381-394 (January 1980) 

A high-density nonequilibrium electron-hole system is investigated in silicon crystals that are elastically 
deformed along the (100) axis, at temperatures T 5.20 K. The two-phase gas + electron-hole liquid region is 
determined, and the critical temperature of the phase transition is estimated at T, = ( I 4 7  1.5) K. 
Investigations of the photoconductivity and of the recombination radiation spectra, as well as of the kinetics 
of the spectra under pulsed excitation, are used to analyze the partial composition of the gas phase in a wide 
range of excitation densities, up to densities corresponding to the dimensionless parameter r, - 1.5. It is 
established that when the density is increased to r, =2.770.3 and at T = 12.5 K the gas phase consists 
predominantly of excitons and excitonic molecules. An investigation of the transformation of a gas of excitons 
(biexcitons) into an electron-hole plasma at T R T, has shown that the excitonic states disintegrate at 
densities corresponding to c=2.5-2. The obtained value of c differs noticeably from the critical density 
estimated from Mott's criterion for an exciton-plasma transition, and comes close to the value of < 
calculated in the approximation of dielectric screening of the excitons. 

PACS numbers: 71.35. + z, 71.45. - d, 64.60. - i, 72.40. + w 

1. INTRODUCTION 

An exciton gas of sufficiently high density can con- 
dense in semiconductors a t  low temperatures into an 
electron-hole liquid (EHL).'.' This condensation of the 
excitons is a first-order phase transition. The region 
of the coexistence of the gas and liquid phases in a non- 
equilibrium electron-hole (e- h) system is determined 
by a phase diagram usually plotted with the density and 
temperature as coordinates. The gas-EHL phase dia- 

grams were investigated most thoroughly in the indirect 
semiconductors and In these 
semiconductors, the binding energy in the liquid, rel- 
ative to the excitonic term, turns out to be quite large 
(-0.4 Ry in Ge and 0.6 Ry in Si, where Ry the excitonic 
~ y d b e r g ) ,  this being attributed to the strong degener- 
acy of the electron and hole bands.' The lifetimes in 
the liquid and gas phases in Ge and Si exceed the char- 
acteristic thermalization times. Therefore the conden- 
sation into drops of metallic EHL in these crystals 
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